Hostname: page-component-77c89778f8-5wvtr Total loading time: 0 Render date: 2024-07-17T17:45:57.748Z Has data issue: false hasContentIssue false

Polyquinolines: Multifunctional Polymers for Electro-Optic and Light-Emitting Applications

Published online by Cambridge University Press:  10 February 2011

Alex K.-Y. Jen
Affiliation:
Department of Chemistry, Northeastern University, Boston, MA 02115, ajen@lynx.neu.edu
Hong Ma
Affiliation:
Department of Chemistry, Northeastern University, Boston, MA 02115
Get access

Abstract

A versatile, and generally applicable modular approach for making second-order nonlinear optical (NLO) side-chain aromatic polyquinolines has been developed. This approach emphasizes the ease of incorporating NLO chromophores onto the pendent phenyl moieties of parent polyquinolines at the final stage via mild Mitsunobu reaction. This method provides the synthesis of polyquinolines with a broad variation of the polymer backbones and great flexibility in the selection of NLO chromophores. These side-chain NLO polyquinolines demonstrate high electro-optic (E-O) activity (up to 35 pm/V at 830 nm and 22 pm/V at 1300 nm, respectively) and a good combination of thermal, optical, electrical and mechanical properties.

Comparatively, two new electroluminescent (EL) polyquinolines have been prepared via the Friedlander condensation and nucleophilic reaction. The resulting polymers contain a bipolar property with both an efficient hole-transporting moiety, tetraphenyldiaminobiphenyl (TPD), and an electron affinitive light-emitting moiety, bis-quinoline. In addition, they possess high thermal stability, excellent electrochemical reversibility, good thin film-forming ability, and bright light-emitting property. Electrical characterization of two-layer diode devices based on the configurations of ITO/CuPc/TPD-PQ or TPD-PQE/Al showed excellent electroluminescence performance (a rectification ratio greater than 105 and a low turn-on voltage of less than 4 V).

Type
Research Article
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Weiss, R. A. and Ober, C. K., Liquid Crystal Polymers (ACS Symp. Series No. 435, American Chemical Society, Washington, DC, 1990).Google Scholar
2. Skotheim, T. A., Handbook of Conductive Polymers (Marcel Dekker, New York and Basel, 1986, Vols. 1 and 2).Google Scholar
3. (a) Marder, S. R., Kippelen, B., Jen, A. K.-Y., and Peyghambarian, N., Nature 388, p. 845 (1997); (b) G. A. Lindsay and K. D. Singer, Polymers for Second-order Nonlinear Optics (ACS Symposium Series No. 601, American Chemical Society, Washington, DC, 1995); (c) C. Bosshard, K. Sutter, P. Prêtre, J. Hulliger, M. Flörsheimer, P. Kaatz, and P. Günter, Organic Nonlinear Optical Materialss (Gordon and Breach, Basel, 1995); (d) P. Prasad and D. Williams, Introduction to Nonlinear Optical Effects in Molecules and Polymers (John Wiley and Sons, New York, 1991); (e) D. S. Chemala and J. Zyss, Nonlinear Optical Properties of Organic Molecules and Crystals (Academic Press, New York, 1987). (f) L. R. Dalton, A. W. Harper, R. Ghosn, H. W. Steier, M. Ziari, H. Fetterman, Y. Shi, R. V. Mustacich, A. K.-Y. Jen, and K. J. Shea, Chem. Mater. 7, p. 1060 (1995); (g) T. J. Marks and M. A. Ratner, Angew. Chem., Int. Ed. Engl. 34 p. 155 (1995); (h) D. M. Burland, R. D. Miller, and C. A.Walsh, Chem. Rev. 94, p. 31 (1994).Google Scholar
4. (a) Greenham, N. C., Moratti, S. C., Bradley, D. D. C., Friend, R. H., and Holmes, A. B., Nature 365, p. 628 (1993); (b) R. Brown, D. D. C. Bradley, P. L. J. Burn, H. Burroughes, R. H. Friend, N. Greenham, and A. Kraft, Appl. Phys. Lett. 61, p. 2793 (1992); (c) H. V. Zhang, B. Seggern, H. W. Schmidt, and A. J. Heeger, Synth. Met. 72, p.185 (1995).Google Scholar
5. Stille, J. K., Macromolecules 14, p. 870 (1981) and references therein.Google Scholar
6. (a) Agrawal, A. K. and Jenekhe, S. A., Macromolecules 26, p. 895 (1993); (b) A. K. Agrawal and S. A. Jenekhe, Chem. Mater. 5, p. 633 (1993); (c) A. K. Agrawal, S. A. Jenekhe, H. Vanherzeele, and J. S. Meth, J. Phys. Chem. 96, p. 2837 (1992); (d) A. K. Agrawal and S. A. Jenekhe, Chem. Mater. 8, p. 579 (1996).Google Scholar
7. Cai, Y. M. and Jen, A. K.-Y., Appl. Phys. Lett. 117, p. 7295 (1995).Google Scholar
8. (a) Chen, T. A., Jen, A. K.-Y., and Cai, Y. M., Chem. Mater. 8, p.607 (1996); (b) A. K.-Y. Jen, X. M. Wu, and H. Ma, ibid. 10, p.4 7 1 (1998); (c) H. Ma, X. J. Wang, X. M. Wu, S. Liu, and A. K.-Y. Jen, Macromolecules 31, p. 4049 (1998).Google Scholar
9. (a) Wu, X. M., Wu, J. Y., Liu, Y. Q., and Jen, A. K.-Y., J. Am. Chem. Soc. 121, p. 472 (1999); (b) C. F. Shu, Y. C. Shu, Z. H. Gong, S. M. Peng, G. H. Lee, and A. K.-Y. Jen, Chem. Mater. 10, p. 3284 (1998); (c) A. K.-Y. Jen, Y. Q. Liu, L. X. Zheng, S. Liu, K. J. Drost, Y. Zhang, and L. R. Dalton, Adv. Mater. 1999, in press.Google Scholar
10. (a) Tamaoto, N., Adachi, C., and Nagai, K., Chem. Mater. 9, p. 1077 (1997); (b) H. Peng, Z. N. Bao, and M. E. Galvin, ibid. 10, p. 2086 (1998).Google Scholar
11. Mitsunobu, O., Synthesis p. 1 (1981).Google Scholar
12. Teng, C. C. and Man, H. T., Appl. Phys. Lett. 56, p. 1734 (1990).Google Scholar