Hostname: page-component-5c6d5d7d68-vt8vv Total loading time: 0.001 Render date: 2024-08-07T04:51:34.946Z Has data issue: false hasContentIssue false

Polymer-Polymer Interdiffusion

Published online by Cambridge University Press:  22 February 2011

Edward J. Kramer*
Affiliation:
Department of Materials Science and Engineering and the Materials Science Center, Cornell University Ithaca, NY 14853
Get access

Abstract

Interdiffusion of polymer chains plays an important role in establishing good adhesion at polymer interfaces as well as in the kinetics of phase separation and mixing in polymer blends. Reptation, a process in which a given linear chain crawls along a primitive path defined by the topological constraints due to the surrounding chains, is thought to be the most important diffusion mechanism. A reptating chain of Volecular weight M should have a tracer diffusion coefficient given by D =DR =Do M−2, where D depends on the Rouse mobility of the chain and an entang ement molecular weight, Me. Because the topological constraints are assumed to be fixed, DR is independent of the molecular weight P of the polymer into which the M-chains are diffusing. In principle however if M is large enough and P is small enough the M-chain can diffuse by rearrangement of the P-chains surrounding it, a process called constraint release. The D for this process, DCR= αCRDoMe2/(MP3), where αCR is a constant approximately equal to 13, increases strongly with decreasing P. Recent experimental results, which give evidence for both reptation and constraint release, will be reviewed. These results have important implications for the diffusion of nonlinear polymer chains, e.g. stars and rings.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Klein, J., Contemp. Phys. 20, 611 (1979).CrossRefGoogle Scholar
2. Voyutskii, S.S., Adhesion and Autohesion of High Polymers (Wiley-Interscience, New York, 1963).Google Scholar
3. Bister, E., Borchard, W. and Rehage, G., Kautschuk&Gummi-Kunstst. 29, 527 (1976).Google Scholar
4. Jud, K., Kausch, H.H. and Williams, J.G., J. Mater. Sci. 16, 204 (1981).CrossRefGoogle Scholar
5. Wool, R.P. and O'Connor, K.M., J. Appl. Phys. 52, 5953 (1981). 237CrossRefGoogle Scholar
6. Rouse, P.E. Jr., J. Chem. Phys. 21, 1272 (1953).CrossRefGoogle Scholar
7. deGennes, P.O., J. Chem. Phys. 55, 4756 (1971).Google Scholar
8. Doi, M. and Edwards, S.F., J. Chem. Soc. Faraday II 8 1789 (1978).CrossRefGoogle Scholar
9. Doi, M. and Edwards, S.F., J. Chem. Soc. Faraday II 8 1809, 1818 (1978).Google Scholar
10. Graessley, W.W., Roy. Soc. Chem. Faraday Div., Faraday Sym. No. 18, in press.Google Scholar
11. Graessley, W.W., J. Polym. Sci.-Polym. Phys., 18, 27 (1980).CrossRefGoogle Scholar
12. Klein, J., Macromolecules 11, 852 (1978).CrossRefGoogle Scholar
13. Daoud, M. and deGennes, P.G., J. Polym. Sci.-Polym. Phys. 17, 1971 (1979).CrossRefGoogle Scholar
14. Klein, J., ACS Polymer Preprints 22, 105 (1979).Google Scholar
15. Graessley, W.W., Adv. in Polym. Sci. 47, 76 (1982).Google Scholar
16. Struglinski, M.J., Doctoral Dissertation, Northwestern Univ., (1984).Google Scholar
17. Ferry, J.D., Viscoelastic Properties of Polymers (Wiley, New York, 1980).Google Scholar
18. Oraessley, W.W and Roovers, J., Macromolecules 12, 959 (1979).CrossRefGoogle Scholar
19. Kumagai, Y., Watanabe, H., Miyasaki, K. and Hata, T., J. Chem. Eng. Japan, 12, 1 (1979).CrossRefGoogle Scholar
20. Antonietti, M., Coutandin, J., Gruetter, R. and Sillescu, H., Macromolecules 17 798 (1978).CrossRefGoogle Scholar
21. Smith, B.A., Samulski, E.T., Yu, L.-P. and Winnik, M.A., Phys. Rev. Lett. 52, 45 (1984).CrossRefGoogle Scholar
22. Bartels, C.R., Graessley, W.W. and Crist, B., J. Polym. Sci.-Polym. Lett. 21, 495 (1983).CrossRefGoogle Scholar
23. Meerwall, E. von, Adv. in Polym. Sci. 54, 1 (1984).CrossRefGoogle Scholar
24. Klein, J. and Briscoe, B.J., Proc. Roy. Soc. London A 365, 53 (1979).Google Scholar
25. Kramer, E.J., Green, P.F. and Palmstrøm, C.J., Polymer 25, 473 (1984).CrossRefGoogle Scholar
26. Mills, P.J., Green, P.F., Palmstrøm, C.J., Mayer, J.W. and Kramer, E.J., Appl. Phys. Lett. 45, 957 (1984).CrossRefGoogle Scholar
27. Tirrell, M., Rubber Chem. Tech. 57, 523 (1984).CrossRefGoogle Scholar
28. Ferry, J.D. and Landel, R.F., Kolloid-Z. 148,1 (1956).CrossRefGoogle Scholar
29. Green, P.F., Mills, P.J., Palmstrøm, C.J, Mayer, J.W., and Kramer, E.J., “Ion Beam Analysis of Diffusion in Polymer Melts”, this volume; Phys. Rev. Lett. 53, Nov 24 (1984).CrossRefGoogle Scholar
30. deGennes, P.G., J. de Physique 36, 1199 (1975).CrossRefGoogle Scholar
31. Doi, M. and Kuzuu, N., J. Polym. Sci.-Polym. Lett. 18 775 (1980).CrossRefGoogle Scholar
32. Klein, J., Fletcher, D. and Fetters, L.J., Nature (London) 304 526 (1983); Faraday Symp. Chem. Soc. No. 18, to be published.CrossRefGoogle Scholar
33. Mills, P.J., Mayer, J.W., Kramer, E.J., Hadziioannou, G., Lutz, P., Strazielle, C., Rempp, P. and Kovacs, A., unpublished.Google Scholar
34. Green, P.F., PhD Thesis, Cornell Univ., (1985).Google Scholar