Hostname: page-component-76fb5796d-skm99 Total loading time: 0 Render date: 2024-04-28T03:42:59.712Z Has data issue: false hasContentIssue false

Polymeric Tissue Culture Substrates patterned by UV Irradiation

Published online by Cambridge University Press:  17 March 2011

Alexander Welle
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institute for Medical Engineering and BiophysicsP.O. Box 3640, 76021 Karlsruhe, GERMANY
Eric Gottwald
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institute for Medical Engineering and BiophysicsP.O. Box 3640, 76021 Karlsruhe, GERMANY
Karl-Friedrich Weibezahn
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institute for Medical Engineering and BiophysicsP.O. Box 3640, 76021 Karlsruhe, GERMANY
Herman Dertinger
Affiliation:
Forschungszentrum Karlsruhe GmbH, Institute for Medical Engineering and BiophysicsP.O. Box 3640, 76021 Karlsruhe, GERMANY
Get access

Abstract

We studied the physico/chemical effects of deep UV irradiation of polystyrene, PMMA and polycarbonate with respect to cell adhesion and protein immobilization. Photochemical modifications of the polymer surfaces yielded unstable peroxides and carboxylic acid groups. Patterned protein adsorbates were realized by coupling via carbodiimid activation of the COOH moieties. We have immobilized enzymes and antibodies. It was observed that hepatoma cells (HepG2) and fibroblasts (L929) adhered in the presence of serum proteins in the culture medium on the irradiated regions of the substrate without any further treatment.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Wu, F. J., Friend, J. R., Remmel, R. P., Cerra, F. B. and Hu, W.-S., Cell Transplantation 8, 233 (1999).Google Scholar
2. Bhatia, S. N., Balis, U. J., Yarmush, M. L. and Toner, M., J. Biomater. Sci. Polym. Edn. 9, 1137 (1998).Google Scholar
3. Ingber, D. E., “Engineering cell shape and function through control of substrate adhesion”, Polymer Surfaces and Interfaces: Characterization, Modification and Application, ed. Mittal, K. L. and Lee, K.-W. (VSP, 1997) pp. 413.Google Scholar
4. Bhatia, S. N. and Chen, C. S., Biomedical Microdevices 2, 131 (1999).Google Scholar
5. Curtis, A. S. G., Forrester, J. V. and Clark, P., J. Cell Sci. 86, 9 (1986).Google Scholar
6. Bruil, A., Terlingen, J. G. A., Beugeling, T., Aken, W. G. v. and Feijen, J., Biomaterials 13, 915 (1992).Google Scholar
7. Uchida, E., Uyama, Y. and Ikada, Y., J. Appl. Polym. Sci. 47, 417 (1993).Google Scholar
8. Fujimoto, K., Takebayashi, Y., Inoue, H. and Ikada, Y., J. Polym. Sci. Polym. Chem. 31, 1035 (1993).Google Scholar
9. Knedlitschek, G., Schneider, F., Gottwald, E., Schaller, T., Eschbach, E. and Weibezahn, K. F., J. Biomed. Eng. 121, 35 (1999).Google Scholar
10. Chandy, T., Das, G. S., Wilson, R. F. and Rao, G. H. R., Biomaterials 21, 699 (2000).Google Scholar