Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-07-05T04:17:56.997Z Has data issue: false hasContentIssue false

Polymeric Complexes of Polyaniline as Anticorrosion Coatings

Published online by Cambridge University Press:  10 February 2011

R. J. Racicot
Affiliation:
Department of Chemistry, United States Air Force Academy, Colorado Springs, CO 80840
S. C. Yang
Affiliation:
Department of Chemistry, University of Rhode Island, Kingston, RI 02881
R. Brown
Affiliation:
Department of Chemical Engineering, University of Rhode Island, Kingston, RI 02881
Get access

Abstract

During the past few years there has been a strong interest in developing conducting polymers as an alternative to the traditional anticorrosion coatings. One of the driving forces for this research comes from the need for an environmentally friendly chromate-free anticorrosion coating for highstrength light weight aluminum alloys. The possibilities for a new scratch-tolerant paint for steel prompted the development of conductive polymer anticorrosion paints. By molecular engineering, we have synthesized a double-strand polymeric complex of polyaniline that is suitable as an anticorrosion paint on metals in low pH environments. In this article, we will discuss (1) the molecular design for solubility and adhesion, (2) the effectiveness of the electroactive coating under electrochemical impedance tests, and (3) a mechanistic study of the anticorrosion mechanism by examining the polymer/metal interfacial interactions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Liu, J. and Yang, S. C., J. Chem. Soc., Chem. Comm., 1529 (1991).Google Scholar
2. Liu, J. M., Sun, L., Hwang, J. H. and Yang, S. C., Mat. Res. Soc. Symp. Proc., 247, 601 (1992).Google Scholar
3. Cushman, R. J., McManus, P. M. and Yang, S. C., J. Electrochem. Soc., 291, 331 (1986).Google Scholar
4. DeBerry, D. W., J. Electrochem. Soc., 132, 1022 (1985).Google Scholar
5. Wei, Y., Wang, J., Jia, X., Yeh, J. M. and Spellane, P., ACS Polymer Preprints, 72, 563 (1995).Google Scholar
6. Jasty, S. and Epstein, A. J., ACS Polymer Preprints, 72, 565 (1995).Google Scholar
7. Sathiyanarayanan, S., Dhawan, S. K., Trivedi, D. C. and Balakrishnan, K., Corrosion Sci., 33 1831 (1992).Google Scholar
8. Trochs-Nagels, G., Winard, R., Weymeersch, A. and Renard, L., J. Appl. Electrochem., 22, 756 (1992).10.1007/BF01027506Google Scholar
9. Ren, S. and Barkey, D., J. Electrochem. Soc., 139, (1992) 1021.Google Scholar
10. Wrobleski, D. A., Benicewicz, B. C., Thompson, K. G., and Bryan, C. J., Polymer Preprints, 35, 265 (1995).Google Scholar
11. Wessling, B., Adv. Mater., 6, 261 (1994).Google Scholar
12. Lu, Wei-Kang, Elsenbaumer, R. L. and Wessling, B., Synthetic Metals, 71 2163 (1995).Google Scholar
13. Racicot, R. J., Clark, R. L., Liu, H-B., Yang, S. C., Alias, M. N., Brown, R., SPIE Proceedings, Optical and Photonic Applications of Electroactive and Conducting Polymers, Vol.2528, 198 (1995).Google Scholar
14. Racicot, R., Alias, M. N., Brown, R., Clark, R. L., Liu, H-B and Yang, S. C., Proc. Materials Res. Soc., 413, 529534 (1996).Google Scholar
15. Racicot, R., Brown, R. and Yang, S. C., Proceedings Synthetic Metals Conf., July (1996). (update)Google Scholar
16. Cohen, S. M., Corrosion Eng., 51 (1), 71 (1995).Google Scholar
17. Groot, C. and Peekema, R. M., The Potential-pH Diagram for Aluminum, U.S. Atomic Energy Comm. Publ.., H.W. 28556, 13 pages, (1953).Google Scholar
18. Yang, S. C., “Conducting Polymer as Electrochromic Material: Polyaniline”, Large-area Chromogenics: Materials and Devices for Transmittance Control, Lampert, C. M. and Granqvist, C. G., editors, SPIE Optical Engineering Press, pgs. 335365, (1990).Google Scholar
19. Naoi, K., Lien, M. and Smyrl, W. H., J. Electrochem. Soc., 138, 440 (1991).Google Scholar
20. Schavon, G., Zotti, G. and Comisso, N., J. Phys. Chem., 98, 4861 (1994).Google Scholar
21. Latanision, R. M., Corrosion Science, 51, No. 4, 270 (1995).Google Scholar
22. Racicot, R. J., Yang, S. C. and Brown, R., Materials Research Society, Fall Meeting, Boston MA, Proceedings Manuscript, (1996). updateGoogle Scholar
23. Baur, J.W., Besson, P., O'Connor, S.A., and Rubner, M.F., in Electrical, Optical, and Magnetic Properties of Organic Solid State Materials III, edited by Jen, A.K.-Y., Lee, C.Y.-C., Dalton, L.R., Rubner, M.F., Wnek, G.E., and Chiang, Y. (Mater. Res. Soc. Proc. 413, Boston, MA, 1996) pp. 583588.Google Scholar
24. McCusick, B.C., Heckert, R.E., Cairns, T.L., Coffman, D.D., and Mower, H.F., J. Am. Chem. Soc., 80, 2806 (1958).Google Scholar
25. Wang, X., Chen, J.I., Marturunkakul, S., Li, L., Kumar, J., and Tripathy, S.K., Chem. Mater., 9, 45 (1997).Google Scholar
26. Katz, H.E., Singer, K.D., Sohn, J.E., Dirk, C.W., King, L.A., Gordon, H.M., J. Am. Chem. Soc., 109, 6561 (1987).Google Scholar
27. Rao, V.P., Jen, A.K.-Y., Wong, K.Y., and Drost, K.J., J. Chem. Soc., Chem. Commun., 1118 (1993).Google Scholar
28. Chance, R.R., Patel, G.N., and Witt, J.D., J. Chem. Phys., 71, 206 (1979).Google Scholar
29. Walters, G., Painter, P., Ika, P., and Frisch, H., Macromolecules, 19, 888 (1986).Google Scholar
30. Wang, X., Li, L., Chen, J.-I., Marturunkakul, S., Kumar, J., and Tripathy, S.K., Macromolecules, 30, 219 (1997).Google Scholar
31. Kim, D.Y., Tripathy, S.K., Li, L., Kumar, J., Appl. Phys. Lett., 66, 1166 (1995).Google Scholar
32. Kim, D.Y., Li, L., Jiang, X.L., Shivshankar, V., Kumar, J., and Tripathy, S.K., Macromolecules, 28, 8835 (1995).Google Scholar
33. Jiang, X.L., Li, L., Kumar, J., Kim, D.Y., Shivshankar, V., and Tripathy, S. K., Appl. Phys. Lett, 68, 2618 (1996).Google Scholar
34. Rochon, P., Batalla, E., and Natansohn, A., Appl. Phys. Lett., 66, 136 (1995).10.1063/1.113541Google Scholar