Skip to main content Accessibility help

Polymer-Derived Silicon Carbide Fibers with Improved Thermomechanical Stability

  • W. Toreki (a1), C. D. Batich (a1), M. D. Sacks (a1), M. Saleem (a1) and G. J. Choi (a1)...


Continuous silicon carbide fibers (”UF fibers”) with low oxygen content (∼2 wt%) were prepared by dry spinning of high molecular weight polycarbosilane solutions and subsequent pyrolysis of the polymer fibers. Room temperature mechanical properties were similar to those of commercially-available Nicalon™ fibers, as average tensile strengths as high as 3 GPa were obtained for some batches with fiber diameters in the range ∼10–15 μm Furthermore, UF fibers showed significantly better thermomechanical stability compared to Nicalon™, as indicated by lower weight losses, lower specific surface areas, and improved strength retention after heat treatment at temperatures up to 1700°C. UF fibers were also characterized by elemental analysis, X-ray diffraction, and scanning Auger microprobe. Strategies were suggested for achieving further improvements in thermomechanical stability.



Hide All
1. Prewo, K. and Brennan, J., J. Mater. Sci. 15 (2), 463 (1980).
2. Brennan, J. and Prewo, K., J. Mater. Sci. 17 (8), 2371 (1982).
3. Prewo, K. M., Brennan, J. J., and Layden, G. K., Am. Ceram. Soc. Bull. 65 (2), 305 (1986).
4. Lamicq, P. J., Bernhart, G. A., Dauchier, M. M., and Mace, J. G., Am. Ceram. Soc. Bull. 65, (2), 336 (1986).
5. Mazdiyasni, K. S. (ed.). Fiber Reinforced Ceramic Composites: Materials. Processino, and Technology, (Noyes Publications, Park Ridge, NJ, 1990).
6. Pysher, D. J., Goretta, K. C., Hodder, R. S. Jr, and Tressler, R. E., J. Am. Ceram. Soc. 72 (2), 284 (1989).
7. Simon, G. and Bunsell, A. R., J. Mater. Sci. 19 (11), 3649 (1984).
8. Clark, T. J., Arons, R. M., Stamatoff, J. B., Rabe, J., Ceram. Eng. Sci. Proc. 6 (7–8), 576 (1985).
9. Jaskowiak, M. H. and DiCarlo, J. A., J. Am. Ceram. Soc. 72 (2), 192 (1989).
10. Bender, B. A., Wallace, J. S., and Schrodt, D. J., J. Mater. Sci 26, (4), 970 (1991).
11. Mah, T., Hecht, N. L., McCullum, D. E., Hoenigman, J. R., Kim, H. M., Katz, A. P., and Lipsitt, H., J. Mater. Sci. 19 (4), 1191 (1984).
12. Johnson, S. M., Brittain, R. D., Lamoreaux, R. H., and Rowcliffe, D. J., Comm. Am. Ceram. Soc, 71 (3), C132 (1988).
13. Hasegawa, Y., J. Mater. Sci. 24 (4), 1177 (1989).
14. Takeda, M., Imai, Y., Ichikawa, H., Ishikawa, T., Ceram. Eng. Sci. Proc. 12 (7–8), 1007 (1991).
15. Silverman, L. A., Hewett, W. D. Jr, Blatchford, T. C., and Beeler, A. J., J. Appl. Polymer Sci.: Appl. Polymer Symp. 47, 99 (1991).
16. Frechette, F., Dover, B., Venkateswaran, V., and Kim, J., Ceram. Eng. Sci. Proc. 12 (7–8), 992 (1991).
17. Yajima, S., Hayashi, J., Omori, M., and Okamura, K., Nature 261, 683 (1976).
18. Yajima, S., Okamura, K., Hayashi, J., and Omori, M., J. Am. Ceram. Soc. 59 (7–8), 324 (1976).
19. Toreki, Wm., Choi, G. J., Batich, C. D., Sacks, M. D., and Saleem, M., Ceram. Eng. Sci. Proc. 12 (7–8), 198 (1992).
20. ASTM Designation D3379, American Society for Testing and Materials, Philadelphia, PA.


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed