Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T13:07:03.347Z Has data issue: false hasContentIssue false

Polymer-Derived Silicon Carbide Fibers with Improved Thermomechanical Stability

Published online by Cambridge University Press:  25 February 2011

W. Toreki
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611
C. D. Batich
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611
M. D. Sacks
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611
M. Saleem
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611
G. J. Choi
Affiliation:
Department of Materials Science and Engineering, University of Florida, Gainesville, FL32611
Get access

Abstract

Continuous silicon carbide fibers (”UF fibers”) with low oxygen content (∼2 wt%) were prepared by dry spinning of high molecular weight polycarbosilane solutions and subsequent pyrolysis of the polymer fibers. Room temperature mechanical properties were similar to those of commercially-available Nicalon™ fibers, as average tensile strengths as high as 3 GPa were obtained for some batches with fiber diameters in the range ∼10–15 μm Furthermore, UF fibers showed significantly better thermomechanical stability compared to Nicalon™, as indicated by lower weight losses, lower specific surface areas, and improved strength retention after heat treatment at temperatures up to 1700°C. UF fibers were also characterized by elemental analysis, X-ray diffraction, and scanning Auger microprobe. Strategies were suggested for achieving further improvements in thermomechanical stability.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Prewo, K. and Brennan, J., J. Mater. Sci. 15 (2), 463 (1980).Google Scholar
2. Brennan, J. and Prewo, K., J. Mater. Sci. 17 (8), 2371 (1982).Google Scholar
3. Prewo, K. M., Brennan, J. J., and Layden, G. K., Am. Ceram. Soc. Bull. 65 (2), 305 (1986).Google Scholar
4. Lamicq, P. J., Bernhart, G. A., Dauchier, M. M., and Mace, J. G., Am. Ceram. Soc. Bull. 65, (2), 336 (1986).Google Scholar
5. Mazdiyasni, K. S. (ed.). Fiber Reinforced Ceramic Composites: Materials. Processino, and Technology, (Noyes Publications, Park Ridge, NJ, 1990).Google Scholar
6. Pysher, D. J., Goretta, K. C., Hodder, R. S. Jr, and Tressler, R. E., J. Am. Ceram. Soc. 72 (2), 284 (1989).Google Scholar
7. Simon, G. and Bunsell, A. R., J. Mater. Sci. 19 (11), 3649 (1984).CrossRefGoogle Scholar
8. Clark, T. J., Arons, R. M., Stamatoff, J. B., Rabe, J., Ceram. Eng. Sci. Proc. 6 (7–8), 576 (1985).Google Scholar
9. Jaskowiak, M. H. and DiCarlo, J. A., J. Am. Ceram. Soc. 72 (2), 192 (1989).Google Scholar
10. Bender, B. A., Wallace, J. S., and Schrodt, D. J., J. Mater. Sci 26, (4), 970 (1991).CrossRefGoogle Scholar
11. Mah, T., Hecht, N. L., McCullum, D. E., Hoenigman, J. R., Kim, H. M., Katz, A. P., and Lipsitt, H., J. Mater. Sci. 19 (4), 1191 (1984).CrossRefGoogle Scholar
12. Johnson, S. M., Brittain, R. D., Lamoreaux, R. H., and Rowcliffe, D. J., Comm. Am. Ceram. Soc, 71 (3), C132 (1988).Google Scholar
13. Hasegawa, Y., J. Mater. Sci. 24 (4), 1177 (1989).Google Scholar
14. Takeda, M., Imai, Y., Ichikawa, H., Ishikawa, T., Ceram. Eng. Sci. Proc. 12 (7–8), 1007 (1991).CrossRefGoogle Scholar
15. Silverman, L. A., Hewett, W. D. Jr, Blatchford, T. C., and Beeler, A. J., J. Appl. Polymer Sci.: Appl. Polymer Symp. 47, 99 (1991).Google Scholar
16. Frechette, F., Dover, B., Venkateswaran, V., and Kim, J., Ceram. Eng. Sci. Proc. 12 (7–8), 992 (1991).Google Scholar
17. Yajima, S., Hayashi, J., Omori, M., and Okamura, K., Nature 261, 683 (1976).Google Scholar
18. Yajima, S., Okamura, K., Hayashi, J., and Omori, M., J. Am. Ceram. Soc. 59 (7–8), 324 (1976).Google Scholar
19. Toreki, Wm., Choi, G. J., Batich, C. D., Sacks, M. D., and Saleem, M., Ceram. Eng. Sci. Proc. 12 (7–8), 198 (1992).Google Scholar
20. ASTM Designation D3379, American Society for Testing and Materials, Philadelphia, PA.Google Scholar