Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-18T06:37:13.141Z Has data issue: false hasContentIssue false

Polymer Electrodes for Flexible Organic Light-Emitting Devices

Published online by Cambridge University Press:  17 March 2011

Woohong Kim
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
Leonidas C. Palilis
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
Antti J. Mäkinen
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
Heungsoo Kim
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
Manabu Uchida
Affiliation:
Chisso Corporation, 5-1 Ookawa Kanazawa, Yokohama, Kanagawa 236-8605, JAPAN
Zakya H. Kafafi
Affiliation:
Naval Research Laboratory, Washington D.C. 20375
Get access

Abstract

We report a high luminance and low operating voltage molecular organic light-emitting diode (MOLED) using a conducting polymer hole-injecting electrode (anode) on a plastic substrate. A dramatic improvement in the rectification ratio is observed upon the insertion of a buffer layer between the conducting polymer anode and the organic hole-transporting layer (HTL). Micro-shorts leading to a leakage current caused by the non-uniformity of the polymer film are greatly reduced. Atomic force microscope (AFM) images show a much smoother surface of the polymer anode/buffer layer relative to that of the bare polymer film. A slight increase (0.3eV ± 0.2eV) in the work function of the polymer anode upon the addition of the buffer layer is also measured. A simple method of patterning the conducting polymer electrode on various substrates including plastics is also reported. This approach conveniently provides finely patterned conducting polymer films with νm resolution while maintaining their intrinsic electrical and optical properties such as the surface sheet resistance and the optical transmittance.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Takaki, S., Matsumoto, K., and Suzuki, K., Appl. Surf. Sci. 33/34, 919925 (1988).Google Scholar
2. Rauf, I. A., J. Appl. Phys. 79, 40574065 (1996).Google Scholar
3. Ishibashi, S., Higuchi, Y., Ota, Y., Nakamura, K., J. Vac. Sci. Technol. A 8, 14031406 (1990).Google Scholar
4. Shigesato, Y., Takaki, S., and Haranoh, T., J. Appl. Phys. 71, 33563364 (1992).Google Scholar
5. Joshi, R. N., Singh, V. P., and McClure, J. C., Thin Solid Films 257, 3235 (1995).Google Scholar
6. Kim, H., Piqué, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H. and Chrisey, D. B., Appl. Phys. Lett. 74, 34443446 (1999).Google Scholar
7. Kim, H., Gilmore, C. M., Piqué, A., Horwitz, J. S., Mattoussi, H., Murata, H., Kafafi, Z. H. and Chrisey, D. B., J. Appl. Phys. 86, 64516461 (1999).Google Scholar
8. Paetzold, R., Heuser, K., Henseler, D., Roeger, S., Wittmann, G., and Winnacker, A., Appl. Phys. Lett, 82 (19), 3342, (2003).Google Scholar
9. Jonas, F., Krafft, W., Muys, B., Macromol. Symp., 100, 169, (1995).Google Scholar
10. Jonas, F. and Morrison, J. T., Synt. Met., 85, 1397, (1995).Google Scholar
11. Ghosh, S., Rasmusson, J., Inganäs, O., Adv. Mater., 10, 1097, (1998).Google Scholar
12. Leshin, A., Kiebooms, R., Menon, R., Heeger, A.J., Synth. Met, 90, 61, (1997).Google Scholar
13. Kiebooms, R., Aleshin, A., Hutchison, K., Wudl, F., Heeger, A. J., Synth. Met.,101, 436, (1999).Google Scholar
14. Kim, H. D., Chung, H. R., Cheong, M. K., and Chang, T. W., USP 6,248,818.Google Scholar
15. Granlund, T., Pettersson, L.A.A., and Inganäs, O., J. Appl. Phys. 89, 5897, (2001).Google Scholar
16. Ghosh, S. and Inganäs, O., Synth. Met., 121(1-3), 1321, (2001).Google Scholar
17. Jonas, F., Karbach, A., Muys, B., Thillo, E., Wehrmann, R., Elschner, A., and Dujardin, R., USP 6083635.Google Scholar
18. Kim, J. Y., Jung, J. H., Lee, D. E., and Joo, J., Synth. Met., 126 (2-3), 311, (2002).Google Scholar
19. Buvat, P., Hourquebie, P., Macromolecules, 30, 2685, (1997).Google Scholar
20. Kim, W. H., Mäkinen, A. J., Nikolov, N., Shashidhar, R., Kim, H., and Kafafi, Z. H., Appl. Phys. Lett., 80, 3844, (2002).Google Scholar
21. Kim, W. H., Mäkinen, A. J., Nikolov, N., Shashidhar, R., Kim, H., and Kafafi, Z. H., Proc. SPIE, 4466, 85, (2002).Google Scholar
22. Kim, W. H., Palilis, L. C., Uchida, M., and Kafafi, Z. H., Chemistry of Materials (submitted).Google Scholar
23. Murata, H., Malliaras, G. G., Uchida, M., Shen, Y., and Kafafi, Z. H., Chem. Phys. Lett. 339, 161, (2001).Google Scholar
24. Palilis, L. C., Uchida, M., and Kafafi, Z. H., IEEE J. Sele. Top. in Quan. Elec, 10 (1), 79, (2004).Google Scholar
25. Murata, H., Kafafi, Z. H., and Uchida, M., Appl. Phys. Lett. 80, 189, (2002).Google Scholar
26. Palilis, L. C., Murata, H., Mäkinen, A. J., Uchida, M., and Kafafi, Z. H., Proc. Symp. On Organic and Polymeric Materials and Devices-Optical, Electrical and Optoelectronic Properties, Jabbour, G. E., Carter, S.A., Kido, J., Lee, S-T., and Sariciftci, N.S., Editors, MRS Proc. 725, 19 (2002).Google Scholar
27. Palilis, L. C., Mäkinen, A. J., Uchida, M., and Kafafi, Z. H., Appl. Phys. Lett. 82, 2209, (2003).Google Scholar
28. Palilis, L. C., Mäkinen, A. J., Murata, H., Uchida, M., and Kafafi, Z. H., In Organic Light Emitting Materials and Devices VI, Zakya H. Kafafi and Homer Antoniadis, Editors, Proceedings of SPIE, 4800, 256, (2003).Google Scholar
29. Palilis, L. C.; Mäkinen, A. J.; Murata, H; Uchida, M; Kafafi, Z. H., Org. Electron., 4, 113, (2003)Google Scholar
30. Duineveld, M. de Kik, Buechel, M., Sempel, A. H., Mutasaers, K. A. H., Weijer, P., Camps, I. G. J., Biggelaar, T. J. M., Rubingh, J. J. M., and Kaskal, E. I., In Organic Light Emitting Materials and Devices V, Zakya H. Kafafi Editor, Proceedings of SPIE 4464, 59, (2002).Google Scholar
31. , Pardo, Jabbour, G. E., and Peyhgamgrian, N., Adv. Mater. 12, 1249, (2000).Google Scholar
32. Birnstock, J., Blässing, J., Hunze, A., Scheffel, M., Stöβel, M., Heuser, K., Wärle, J., Wittmann, G., and Winnacker, A., In Organic Light Emitting Materials and Devices V, Zakya H. Kafafi Editor, Proceedings of SPIE 4464, 68, (2002).Google Scholar
33. Kim, W. H., Kushto, G. P., Kim, H., and Kafafi, Z. H., J Polym Sci Part B: Polym Phys, 41, 2471, (2003).Google Scholar
34. Recommended optimum baking condition is 130°C for 2min. Personal communication with Agfa.Google Scholar
35. Tamao, K., Uchida, M., Izumizawa, T., Furukawa, K., and Yamaguchi, S., J. Am. Chem. Soc. 118, 11974. (1996).Google Scholar
36. Yamaguchi, S., Endo, T., Uchida, M., Izumizawa, T., Furukawa, K., and Tamao, K., Chem. Eur. J. 6, 1683 (2000).Google Scholar