Skip to main content Accessibility help
×
Home

Polycrystalline Silicon Films for Microelectromechanical Devices

  • H. Kahn (a1), S. Stemmer (a1), R. L. Mullen (a2), M. A. Huff (a3) and A. H. Heuer (a1)...

Abstract

Polycrystalline silicon is the most widely used structural material for surface micromachined microelectromechanical systems (MEMS). There are many advantages to using thick polysilicon films; however, due to process equipment limitations, these devices are typically fabricated from polysilicon films less than 3 μm thick. In this work, microelectromechanical test structures were designed and processed from thick (up to 10 μm) in situ boron-doped polysilicon films. The elastic modulus of these films was about 150 GPa, independent of film thickness. The thermal oxidation of the polysilicon induced a compressive stress into the top surface of the films, which was detected as a residual stress in the polysilicon after the device fabrication was complete.

Copyright

References

Hide All
1. Lange, P., Kirsten, M., Riethmuller, W., Wenk, B., Zwicker, G., Morante, J.R., Ericson, F., and Schweitz, J.A., IEEE TRANSDUCERS '95, 202 (1995).
2. Chu, W.H., Mehregany, M., Ning, X., and Pirouz, P. in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W.D., Bravman, J.C., Arzt, E., and Freund, L.B. (Mater. Res. Soc. Proc. 239, Pittsburgh, PA, 1992) p. 169.
3. Guckel, H., Bums, D.W., Visser, C.C.G., Tilmans, H.A.C., and Deroo, D., IEEE Trans. Elec. Dev., 35, 800 (1988).
4. Tang, W.C., Nguyen, T.H., and Howe, R.T., Sensors and Actuators, 20, 25 (1989).
5. Lin, L., Howe, R.T., and Pisano, A.P., IEEE TRANSDUCERS 93, 201 (1993).
6. Ericson, F., Greek, S., Soderkvist, J., and Schweitz, J.A., IEEE TRANSDUCERS 95, 84 (1995).
7. Ristic, L, Sensor Technology and Devices (Arteh House, Norwood, MA, 1994), pp. 95156.
8. Yasseen, A., Case Western Reserve University, unpublished results.
9. Bernstein, J., Draper, Charles S. Laboratory, private communication (January 3, 1994).
10. Pratt, R.I., Johnson, G.C., Howe, R.T., and Chang, J.C., IEEE TRANSDUCERS 91, 205 (1991).
11. Guo, S, Zou, D, and Wang, W. in Smart Materials Fabrication and Materials for Micro-Electro-Mechanical Systems. edited by Jardine, A.P., Johnson, G.C., Crowson, A., and Allen, M. (Mater. Res. Soc. Proc. 276, Pittsburgh, PA, 1992) p. 233.
12. Nussbaum, A. and Phillips, R.A., Contemporary Optics for Scientists and Engineers (Prentiss-Hall, Englewood Cliffs, NJ, 1976), pp. 147164.
13. Kawata, M. and Katoda, T., J. Appl. Phys., 75, 7456 (1994).
14. Maseeh, F. and Senturia, S.D., Sensons and Actuators, A21–A23, 861 (1990).
15. Hu, S.M., J. Appl. Phys., 45, 1567 (1974).
16. Tan, T.Y. and GtSsele, U., Appl. Phys. Lett., 40, 616 (1982).
17. Charitat, G. and Martinez, A., J. Appl. Phys., 55, 909 (1984).
18. Shibata, K. and Taniguchi, K., J. Electrochem. Soc., 127, 1383 (1980).

Polycrystalline Silicon Films for Microelectromechanical Devices

  • H. Kahn (a1), S. Stemmer (a1), R. L. Mullen (a2), M. A. Huff (a3) and A. H. Heuer (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed