Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-23T18:34:45.624Z Has data issue: false hasContentIssue false

Polarization Spectroscopy of Charged Single Self-Assembled Quantum Dots

Published online by Cambridge University Press:  01 February 2011

Morgan E. Ware
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Allan Bracker
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Daniel Gammon
Affiliation:
Naval Research Laboratory, Washington, DC 20375
David Gershoni
Affiliation:
Naval Research Laboratory, Washington, DC 20375
Get access

Abstract

We have demonstrated single dot spectroscopy of InAs/GaAs self-assembled quantum dots embedded in a bias controlled Schottky diode. The photoluminescence spectra exhibit discrete lines depending on bias, which we attribute to the recombination of positively charged, neutral, and negatively charged confined excitons. With excitation directly into the dot, large circular polarization memory is exhibited by the two charged exciton (trion) lines. This indicates long spin lifetimes for both the electron and the heavy hole in the quantum dots.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Loss, D., DiVincenzo, D. P., Phys. Rev. A 57, 120 (1998).Google Scholar
2. Gammon, D. and Steel, D.G., Physics Today 55, 36 (2002)Google Scholar
3. Regelman, D.V., Dekel, E., Gershoni, D., Ehrenfreund, E., Williamson, A. J., Shumway, J., and Zunger, A., Schoenfeld, W. V. and Petroff, P. M., Phys. Rev. B 64, 165301, (2001).Google Scholar
4. Moskalenko, E. S., Karlsson, K. F., Holtz, P. O., Monemar, B., Schoenfeld, W. V., Garcia, J. M. and Petroff, P. M. J. App. Phys. 92(11) 6787 (2002).Google Scholar
5. Warburton, R.J., Schäflein, C., Haft, D., Bickel, F., Lorke, A., Karrai, K., Garcia, J. M., Schoenfeld, W. and Petroff, P. M., Nature, 405, 926, (2000).Google Scholar
6. Ashmore, A.D., Finley, J.J., Oulton, R., Fry, P.W., Lemaitre, A., Mowbray, D.J., Skolnick, M.S., Hopkinson, M., Buckle, P.D. and Maksym, P.A., Physica E, 13, 127 (2002).Google Scholar
7. Zrenner, A.; Findeis, F., Baier, M., Bichler, M., Abstreiter, G., Hohenester, U. and Molinari, E., Physica E 13, 95 (2002).Google Scholar
8. Optical Orientation, edited by Meier, F. and Zakharchenya, B., “Modern Problems in Condensed Matter Sciences”, Vol. 8 (North-Holland, Amsterdam 1984).Google Scholar
9. Dekel, E., Gershoni, D., Ehrenfreund, E., Spektor, D., Garcia, J.M. and Petroff, P.M., Phys. Rev. Lett. 80, 49914994 (1998)Google Scholar
10. Wasilewski, Z. R., Fafard, S., and McCaffrey, J. P., J. Cryst. Growth 201/202, 1131 (1999).Google Scholar
11. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S., and Park, D., Phys. Rev. Lett. 76, 3005 (1996);Google Scholar
Gammon, D., Efros, Al. L., Kennedy, T. A., Rosen, M., Katzer, D. S., and Park, D., Brown, S.W., Korenev, V. L. and Merkulov, I. A. Phys. Rev. Lett. 86, 5176 (2001).Google Scholar
12. Bayer, M, Ortner, G, Stern, O, Kuther, A., Gorbunov, A. A., Forchel, A., Hawrylak, P., Fafard, S., Hinzer, K., Reinecke, T. L. Walck, S. N., Reithmaier, J. P., Klopf, F., and Schäfer, F., Phys. Rev. B 65 (19): 195315 (2002).Google Scholar
13 Khaetskii, A. V. and Nazarov, Y. V., Phys. Rev. B 61, 12639 (2000).Google Scholar