Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-26T11:49:12.713Z Has data issue: false hasContentIssue false

Polarization Control of Vertical-Cavity Surfaceemitting Lasers by Tilted-Etching of Cavity

Published online by Cambridge University Press:  10 February 2011

Hye Yong Chu
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P.O. Box 106, Taejon 305-600, Korea, hychu@idea.etri.re.kr
Byueng-Su Yoo
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P.O. Box 106, Taejon 305-600, Korea, hychu@idea.etri.re.kr
Min Soo Park
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P.O. Box 106, Taejon 305-600, Korea, hychu@idea.etri.re.kr
Hyo-Hoon Park
Affiliation:
Electronics and Telecommunications Research Institute, Yusong P.O. Box 106, Taejon 305-600, Korea, hychu@idea.etri.re.kr
Get access

Abstract

We performed a polarization control method for vertical-cavity surface-emitting lasers by tilted-etching of the air-post. Circular laser posts were etched by tilting the substrate toward [110] or [110] direction with an angle of 15° ˜ 20° using reactive ion beam etching. For the laser devices with a diameter of 7 ˜ 10 μm, we observed outstanding selectivity of the polarization state. We found a dominant polarization perpendicular to the tilted direction. The maximum orthogonal polarization suppression ratio was about 25 dB. The selectivity of polarization in the tilted laser post devices is interpreted to be originated from the difference of optical losses of the two waves polarized to the [110] and [110] directions.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Lee, Y. H., Jewell, J. L., Scherer, A., McCall, S. L., Harbison, J. P. and Florze, L. T., Electron. Lett. 25, p.1377 (1989).Google Scholar
2. Mukaihara, T., Ohnoki, N., Hayashi, Y., Hatori, N., Koyama, F. and Iga, K., IEEE J. Selected Topics in Quantum Electron. 1, p.667 (1995).Google Scholar
3. Chavez-Pirson, A., Ando, H., Saito, H. and Kanbe, H., Appl. Phys. Lett. 62, p.3082 (1993).Google Scholar
4. Choquette, K. D. and Leibenguth, R. E., IEEE Photon. Technol. Lett. 6, p.40 (1994).Google Scholar
5. Jiang, S., Pan, Z., Degenais, M., Morgan, R. A. and Kojima, K., Appl. Phys. Lett. 63, p. 3545 (1993).Google Scholar
6. Ser, J.-H., Ju, Y.-G., Sin, J.-H. and Lee, Y. H., Appl. Phys. Lett. 66, p.2769 (1995).Google Scholar
7. Yoo, B.-S., Park, H.-H., and Lee, E.-H., Electron Lett. 30, p.1060 (1994).Google Scholar
8. Park, H.-H. and Yoo, B.-S., ETRI J. 17, p.1 (1995).Google Scholar
9. Chang-Hasnain, C. J., Harbison, J. P., Hasnain, G., Lehmen, A. C. Von, Florez, L. T. and Stoffel, N. G., IEEE J. Quantum Electron. 27, p. 1402 (1991).Google Scholar
10. Chang-Hasnain, C. J., Harbison, J. P., Florez, L. T. and Stoffel, N. G., Electron. Lett. 27, p.1067 (1991)Google Scholar