Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-27T04:51:41.492Z Has data issue: false hasContentIssue false

Polarization Anisotropy in Electroreflectance Spectrum of Porous Silicon

Published online by Cambridge University Press:  11 February 2011

Toshihiko Toyama
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560–8531, Japan
Yasuharu Nakai
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560–8531, Japan
Koji Moriguchi
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560–8531, Japan
Hiroaki Okamoto
Affiliation:
Department of Physical Science, Graduate School of Engineering Science, Osaka University Toyonaka, Osaka 560–8531, Japan
Get access

Abstract

Linearly polarized electroreflectance (ER) measurements have been firstly performed on PSi with near-normal incident (NNI) and glancing-angle incident (GAI) light. In the NNI geometry, no significant polarization anisotropy is observed. Meanwhile, in GAI geometry, a clear polarization anisotropy is observed. The s-polarized ER spectrum consists of the ER features corresponding to those found in the NNI geometry, while in the p-polarized ER spectrum, the two features found in s-polarized spectrum in infrared-visible region are not found, while a new feature is observed at ∼2.1 eV. The mechanism of the unusual polarization anisotropy is discussed in association with structural anisotropy of PSi.

Type
Research Article
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Aspnes, D. E., J. Vac. Sci. Technol. B 3, 1498 (1985).Google Scholar
2. Cullis, A. J., Canham, L. T., and Calcott, P. D. J., J. Appl. Phys. 82, 909 (1997) and references therein.Google Scholar
3. Kovalev, D., Polisski, G., Diener, J., Heckler, H., Künzner, N., Timoshenko, N. Yu., and Koch, F., J. Appl. Phys. 78, 916 (2001).Google Scholar
4. Künzner, N., Kovalev, D., Diener, J., Gross, E., Timoshenko, V. Yu., Polissaki, G., Koch, F., and Fujii, M., Opt. Letts. 26, 1265 (2001).Google Scholar
5. Andrianov, A. V., Kovalev, D., Zinovev, N. N., and Yaroshetskii, I. D., JETP Lett. 58, 427 (1993).Google Scholar
6. Kovalev, D., Ben Chorin, M., Diener, J., Efros, Al. L., Rosen, M., Gippius, N. A., and Tikhodeev, S. G., Appl. Phys. Lett. 67, 1585 (1995).Google Scholar
7. Givant, A., Shappir, J., and Saar, A., Appl. Phys. Lett. 73, 3150 (1998).Google Scholar
8. Koyama, H. and Koshida, N., Phys. Rev. B 52, 2649 (1995).Google Scholar
9. Cardona, M., Modulation Spectroscopy (Academic Press, New York, 1962).Google Scholar
10. Acosta-Ortiz, S.E. and Lastras-Martinez, A., Phys. Rev. B 40, 1426 (1989).Google Scholar
11. Prieto, J. A. and Armelles, G., Phys. Rev B 53, 6912 (1996).Google Scholar
12. Toyama, T., Shimode, A., and Okamoto, H., Mater. Res. Soc. Symp. Proc. 609, A24.10 (2000).Google Scholar
13. Toyama, T., Nakai, Y., Moriguchi, K., Okamoto, H., Phys. Stat. Solidi (a) (in press).Google Scholar
14. Toyama, T., Nakai, Y., Okamoto, H., Mater. Res. Soc. Symp. Proc. 638, F3.5 (2001).Google Scholar