Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T18:17:10.531Z Has data issue: false hasContentIssue false

Point Defects in GaAs and Other Semiconductors

Published online by Cambridge University Press:  25 February 2011

P. Ehrhart
Affiliation:
Inst, für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-5170 Jülich
K. Karsten
Affiliation:
Inst, für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-5170 Jülich
A. Pillukat
Affiliation:
Inst, für Festkörperforschung, Forschungszentrum Jülich, Postfach 1913, D-5170 Jülich
Get access

Abstract

In order to understand the properties of intrinsic point defects and their interactions at high defect concentrations GaAs wafers were irradiated at 4.5 K with 3 MeV electrons up to a dose of 4.1019 e-/cm2. The irradiated samples were investigated by X-ray Diffraction and optical absorption spectrocopy. The defect production increases linearly with irradiation dose and characteristic differences are observed for the two sublattices. The Ga-Frenkel pairs are strongly correlated and are characterized by much larger lattice relaxations (Vrel=2–3 atomic volumes) as compared to the As-Frenkel pairs (Vrel ≈ 1 at.voL). The dominating annealing stage around 300 K is attributed to the mobility of the Ga interstitial atoms whereas the As-interstitial atoms can recombine with their vacancies only around 500 K. These results are compared to those for InP, ZnSe and Ge. Implications for the understanding of the damage after ion irradiation and implantation are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Bourgoin, J.C., Bardeleben, H.J.v., Stiévenard, D., J. Appl Phys. 64, R65 (1988).Google Scholar
2. Dabrowski, J., and Scheffler, M., Phys. Rev. Lett. 60, 2183 (1988).CrossRefGoogle Scholar
3. Krambrock, K., and Spaeth, J.-M., Mat. Sci. For. 83–87, 887 (1992).Google Scholar
4. Fahey, P.M., Griffin, P.B., and Plummer, J.D., Rev. Mod. Phys. 61, 289 (1989).Google Scholar
5. Stiévenard, D., Boddaert, X., Bourgoin, J.C., Bardeleben, H.J.v., Phys. Rev. B41, 5271 (1990).Google Scholar
6. Reynaud, F. and Legros-de Mauduit, B., Rad. Eff. 88, 1 (1986).Google Scholar
7. Loretto, D. and Loretto, M.H., Phil. Mag. A60, 597 (1989).Google Scholar
8. Corbett, J.W., Carins, J. P., and Tan, T.Y., Nucl. Instr. Meth. 182/183, 457 (1981).Google Scholar
9. Seidman, D. N., Averback, R. S., Okamoto, P. R. and Baily, A. C., MRS Proc. Vol. 51, 349 (1987).Google Scholar
10. Spaeth, J. -M., Fockele, M., and Krambrock, K.., in Non-Stochiometry in Semiconductors (Bachmann, K. J., Hwang, H. L., and Schwab, C., eds., Elsevier), p. 193 (1992).CrossRefGoogle Scholar
11. Dederichs, P. D., J. Phys. F3, 471 (1973).Google Scholar
12. Guinier, A. and Fournet, G., Small Angle Scattering of X-rays, Wiley New York (1955).Google Scholar
13. Stephens, P. J., Adv. in Chem. Phys. 35, 197 (1976).Google Scholar
14. Ehrhart, P., Mat. Res. Soc. Proc. Vol. 41, 13 (1985).Google Scholar
15. Vook, F. C., J. Phys. Soc. Jap. 18, Suppl. II, p. 190 (1963).Google Scholar
16. Pillukat, A. and Ehrhart, P., to be published.Google Scholar
17. Pillukat, A., KFA-J̅lich, J̅l-2547 (1991).Google Scholar
18. Würschum, R., Bauer, W., Maier, K., Seeger, A. and Schaefer, H.E., J. Phys. Cond. Mat. 1, Suppl. A, 33 (1989).Google Scholar
19. Corbel, C., Pierre, F., Hautojärvi, P., Saarinen, M. and Moser, P., Phys. Rev. B41, 10632 (1990), and Phys. Rev. B45, 3386 (1992).Google Scholar
20. Pillukat, A. and Ehrhart, P., Appl Phys. Lett. 60, 2794 (1992).Google Scholar
21. Lindner, G., Winter, S., Hofsäss, H., Jahn, S., Blasser, S., Recknagel, E. and Weyer, G., Phys. Rev. Lett. 63, 179 (1989).Google Scholar
22. Jia, Y. Q., Bardeleben, H. J. v., Stiévenard, D. and Delerue, C., Phys. Rev. B45, 1645 (1992).Google Scholar
23. Goltzené, A., Meyer, B. and Schwab, C., J. Appl Phys. 57, 1332 (1985).Google Scholar
24. Pillukat, A. and Ehrhart, P., Mat. Sci. For. 83–87, 947 (1992).Google Scholar
25. Massarani, M. O. and Bourgoin, J. C., Phys. Rev. B34, 2470 (1986).Google Scholar
26. Coates, R. and Mitchell, E. W. J., Adv. Phys. 24, 593 (1975).Google Scholar
27. Ascheron, C., phys. stat. sol. (a) 124, 11 (1991).Google Scholar
28. Watkins, G. D., Rong, F., Barry, W. A. and Doregon, J. F., Mat. Res. Soc. Proc. Vol. 104, 3 (1988).CrossRefGoogle Scholar
29. North, J. C. and Buscheri, R. C., J. Appl Phys. 37, 639 (1966).Google Scholar
30. Bourgoin, J. C., Mooney, P. M. and Poulin, F., in Inst. Phys. Conf. Ser. No. 59, 33 (1980).Google Scholar
31. Vetrano, J. S., Bench, J. W., Robertson, I. M. and Kirk, M. A., Met. Trans. 20A, 2673 (1989).CrossRefGoogle Scholar