Hostname: page-component-848d4c4894-xfwgj Total loading time: 0 Render date: 2024-06-19T22:44:44.870Z Has data issue: false hasContentIssue false

Platelet Inversion Domains Induced by Mg-doping in ELOG AlGaN Films

Published online by Cambridge University Press:  01 February 2011

R. Liu
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
F. A. Ponce
Affiliation:
Department of Physics and Astronomy, Arizona State University, Tempe, AZ 85287
D. Cherns
Affiliation:
Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
H. H. Wills
Affiliation:
Physics Laboratory, University of Bristol, Bristol BS8 1TL, UK
H. Amano
Affiliation:
Department of Materials Science and Engineering, Meijo University, Nagoya 468, Japan
I. Akasaki
Affiliation:
Department of Materials Science and Engineering, Meijo University, Nagoya 468, Japan
Get access

Abstract

We have studied the microstructure of heavily Mg-doped Al0.03Ga0.97N films grown by metal-organic vapor phase epitaxy in the lateral overgrowth mode (ELOG). A new type of defects with a platelet shape has been observed. According to TEM analysis, these defects are embedded in the overgrowth regions. The platelet is normal to the ELOG stripe direction [1100]AIGaN, forming trapezoidal trenches on the film surface. The thickness of the platelet is about 100nm. We have identified these defects as inversion domains using convergent beam electron diffraction and HR-TEM. Mg segregation at the coalescence boundaries between ELOG islands is believed to result in the formation of the defects.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Romano, L. T., Northrup, J. E., Ptak, A. J. and Myers, T. H., Appl. Phys. Lett. 77, 2479 (2000).Google Scholar
[2] Lilliental-Weber, Z., Benamara, M., Swider, W., Washburn, J., Grzegory, I., Porowski, S., Lambert, D. J. H., Eiting, C. J. and Dupuis, R. D., Appl. Phys. Lett. 75, 4159 (1999).Google Scholar
[3] Vennegues, P., Benaissa, M., Beaumont, B., Feltin, E., De Mierry, P., Dalmasso, S., Leroux, M., and Gibart, P., Appl. Phys. Lett. 77, 880 (2000).Google Scholar
[4] Leroux, M., Vennegues, P., Dalmasso, S., Benaissa, M., Feltin, E., De Mierry, P., Beaumont, B., Damilano, B., Grandjean, N., and Gibart, P., Phys. Stat. Sol. (a) 192, 394 (2002).Google Scholar
[5] Bell, A., Liu, R., Ponce, F. A., Amano, H., Akasaki, I., and Cherns, D., Appl. Phys. Lett. 82, 349 (2003).Google Scholar
[6] Northrup, J. E., Appl. Phys. Lett. 82, 2278 (2003).Google Scholar
[7] Liu, R., Bell, A., Ponce, F. A., Cherns, D., Amano, H. and Akasaki, I., Mat. Res. Soc. Symp. Proc. 743, L1.11.1 (2003).Google Scholar
[8] Ponce, F. A., Bour, D. P., Young, W. T., Saunders, M., and Steeds, J. W., Appl. Phys. Lett. 69, 337 (1996).Google Scholar
[9] Northrup, J. E., Neugebauer, J., and Romano, L. T., Phys. Rev. Lett. 77, 103 (1996).Google Scholar
[10] Liliental-Weber, Z., Benamara, M., Swider, W., Washburn, J., Grzegory, I., Porowski, S., Dupuis, R. D., Eiting, C. J., Physica B, 273/274 124 (1999).Google Scholar