Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-26T05:13:28.662Z Has data issue: false hasContentIssue false

Plastic Deformation-Induced Nanocrystalline Aluminum in Al-Based Amorphous Alloys

Published online by Cambridge University Press:  15 February 2011

H. Chen
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903, U.S.A.
Y. He
Affiliation:
Department of Physics, University of Virginia, Charlottesville, VA 22903, U.S.A.
G. J. Shiflet
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903, U.S.A.
S. J. Poon
Affiliation:
Department of Materials Science and Engineering, University of Virginia, Charlottesville, VA 22903, U.S.A.
Get access

Abstract

We report the first direct observation of crystallization induced in the slipped planes of aluminum based amorphous alloys by bending the amorphous ribbons. Nanometer-sized crystalline precipitates are found exclusively within a thin layer (shear band) in the slipped planes extending across the deformed amorphous alloy ribbons. It is also found that the nanocrystalline aluminum can be produced by ball-Milling. It is likely that local atomic rearrangements within the shear bands create the nanocrystals which appear after plastic deformation.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Luborsky, F.E., Amorphous Metallic Alloys (Butterworth, Boston 1983).Google Scholar
2. Guntheroldt, H.J. and Beck, H., Glassy Metals (Springer-Verlag, New York, 1981).Google Scholar
3. Wei, G. and Cantor, B., Acta Met., 37, 3409 (1989).Google Scholar
4. Koster, U. and Witteler, B.P., MRS Symp. Proc., 80, 355 (1987).Google Scholar
5. Muller, K. and Heimendahl, M.V., J. Mat. Sci., 17, 2525 (1982).Google Scholar
6. Miyoshi, K. and Buckley, D.H., Thin Solid Films, 118, 363 (1984).Google Scholar
7. Koster, U., Mat. Sci. Eng., 97, 233 (1988).Google Scholar
8. He, Y., Poon, S.J. and Shiflet, G.J., Science, 241, 1640 (1988).Google Scholar
9. Shiflet, G.J., He, Y. and Poon, S.J., Scripta Met., 22, 1661 (1988).Google Scholar
10. Shiflet, G.J., He, Y. and Poon, S.J., J. Appl. Phys., 64, 6863 (1988).Google Scholar
11. He, Y., Poon, S.J. and Shiflet, G.J., Scripta Met., 22, 1813 (1988).Google Scholar
12. Inoue, A., Ohtera, K., Tsai, A.P. and Masumoto, T., Jpn. J. Appl. Phys., 27, L479 (1988).Google Scholar
13. He, Y., Chen, H., Shiflet, G.J. and Poon, S.J., Phil. Mag. Lett., 61, 297 (1990).Google Scholar
14. Chen, H., He, Y., Shiflet, G.J. and Poon, S.J., Scripta Met., 25, 1421 (1991).Google Scholar
15. Chen, H., PhD Dissertation (University of Virginia, Charlottesville, Virginia 1992).Google Scholar
16. Inoue, A., Ohtera, K., Tao, Z. and Masumoto, T., Jpn. J. Appl. Phys., 27, L1853 (1988).Google Scholar
17. Kim, Y.H., Inoue, A. and Masumoto, T., Mater. Trans. JIM, 31, 747 (1990).Google Scholar