Skip to main content Accessibility help
×
Home

Plasma-enhanced chemical vapor deposition of carbon nanotubes using alcohol vapor

  • Atsushi Okita (a1), Yoshiyuki Suda (a2), Masayuki Maekawa (a3), Junichi Takayama (a4), Akinori Oda (a5), Hirotake Sugawara (a6) and Yosuke Sakai (a7)...

Abstract

We have successfully grown carbon nanotubes (CNTs) by alcohol plasma-enhanced chemical vapor deposition (PECVD). When 0.01 wt% ferrocene was added to alcohol, vertically-aligned CNTs could be grown using RF (= 13.56 MHz) plasma at 650°C. In contrast, no CNTs were obtained by pure alcohol PECVD. To understand the plasma properties for CNT growth, especially plasma species containing a gas phase of alcohol plasma, we analyzed the plasma using optical emission spectroscopy (OES) and quadrupole mass spectrometry (QMS). From the OES measurement, one could identify the emission peaks from the excitation states of CHO, CO, C2, O2, H, CH+, and H2O+, while the QMS measurement also showed the existence of CO, H2O, and CxHy (x≥2, y≥2). It is considered that such plasma species affect CNT growth by changing the oxidation state of the catalyst or by adjusting the amount of precursor species in the plasma. Comparing this PECVD experiment with thermal alcohol CVD (without plasma), only PECVD can be used to grow CNTs under the reported experimental conditions. It is considered that thermal alcohol CVD requires more energy to grow CNTs because 650°C is a little lower than the temperature required for CNT growth. These results indicate that in alcohol plasma, the active species produced by decomposition and recombination reactions have a possibility to promote/suppress CNT growth depending on the process conditions.

Copyright

References

Hide All
1. Kreupl, F., Graham, A. P., Duesberg, G. S., Steinhogl, W., Liebau, M., Unger, E., and Honlein, W., Microelectron Eng. 64, 399408 (2002).
2. Bae, E. J., Min, Y. S., Kang, D., Ko, J. H., and Park, W., Chem. Mater. 17, 51415145 (2005).
3. Ren, Z. F., Huang, Z. P., Xu, J. W., Wang, J. H., Bush, P., Siegal, M. P., and Provencio, P. N., Science 282, 11051107 (1998).
4. Kato, T., Jeong, G. H., Hirata, T., Hatakeyama, R., Tohji, K., and Motomiya, K., Chem. Phys. Lett. 83, 422426 (2003).
5. Meyyappan, M., Delzeit, L., Cassell, A., Hash, D., Plasma Sources Sci. Technol. 12, 205216 (2003).
6. Denysenko, I., and Ostrikov, K., Appl. Phys. Lett. 90, 251501 (2007).
7. Zhang, G., D Mann, Zhang, L., Javey., A. Li, Y., Yenilmez, E., Wang, Q., McVittie, J. P., Nishi, Yoshio, Gibbons, J., and Dai, H., PNAS 102, 1614116145 (2005).
8. Zhong, G., Iwasaki, T., Honda, K., Furukawa, Y., Ohdomari, I., and Kawarada, H., Chem. Vapor Deposition 11, 127130 (2005).
9. Okita, A., Ozeki, A., Suda, Y., Nakamura, J., Oda, A., Bhattacharyya, K., Sugawara, H., and Sakai, Y., Jpn. J. Appl. Phys. 45, 83238329 (2006).
10. Okita, A., Suda, Y., Ozeki, A., Sugawara, H., Sakai, Y., Oda, A., and Nakamura, J. J. Appl. Phys. 99, 014302 (2006).
11. Okita, A., Suda, Y., Oda, A., Nakamura, J., Ozeki, A., Bhattacharyya, K., Sugawara, H., and Sakai, Y., Carbon 45, 15181526 (2007).
12. Murakami, Y., Chiashi, S., Miyauchi, Y., and Maruyama, S., Jpn. J. Appl. Phys. 43, 12211226 (2004).
13. Chiashi, S., Murakami, Y., Miyauchi, Y., and Maruyama, S., Chem. Phys. Lett. 386, 8994 (2004).
14. Yanguas-Gil, A., Hueso, J. L., Cotrino, J., Caballero, A., and Gonzalez-Elipe, A. R., Appl. Phys. Lett. 85, 40044006 (2004).
15. Aubry, O., Met, C., Khacef, A., and Cormier, J. M., Chem. Eng. Journal 106, 241247 (2005).
16. Izake, E. L., Paulmier, T., Bell, J. M., and Fredericks, P. M., J. Mater. Chem. 15, 300306 (2005).
17. Park, J., Zhu, R. S., and Lin, M. C., J. Chem. Phys. 117, 32243231 (2002).
18. Hata, K., Futaba, D. N., Mizuno, K., Namai, T., Yumura, M., Iijima, S., Science 306, 13621364 (2004).
19. Maruyama, S., Kojima, R., Miyauchi, Y., Chiashi, S., and Kohno, M., Chem. Phys. Lett. 360, 229234 (2002).

Keywords

Plasma-enhanced chemical vapor deposition of carbon nanotubes using alcohol vapor

  • Atsushi Okita (a1), Yoshiyuki Suda (a2), Masayuki Maekawa (a3), Junichi Takayama (a4), Akinori Oda (a5), Hirotake Sugawara (a6) and Yosuke Sakai (a7)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed