Hostname: page-component-84b7d79bbc-fnpn6 Total loading time: 0 Render date: 2024-07-30T22:15:27.919Z Has data issue: false hasContentIssue false

Plasma-Assisted Chemical Vapor Deposition of Ceramic Films and Coatings

Published online by Cambridge University Press:  21 February 2011

Robert F. Davis*
Affiliation:
North Carolina State University, Department of Materials Science and Engineering, Raleigh, NC 27695–7907
Get access

Abstract

Plasma-assisted chemical vapor deposition uses energetic electrons to decompose reactant gas molecules into more simple and more highly reactant species to achieve deposition of amorphous and crystalline films and coatings at reduced temperatures. The basis of this technique, as well as the deposition conditions and properties of several ceramic films including Al2O3, TiO2, ZnO, AN, BN, TiN, SiC, Si, GaAs, SiC, C (diamond) and GaN, are briefly described. Modifications of the classical immersed method, including remote plasmas, the use of microwave frequencies and electron cyclotron resonance techniques, are also described with material examples.

Type
Research Article
Copyright
Copyright © Materials Research Society 1989

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Reinberg, A. R., U. S. Patent No. 3,757,733, Sept. 1, 1973.Google Scholar
2. Reinberg, A. R., J. Electron. Mater. 8, 345 (1979).Google Scholar
3. Gorowitz, B., Gorpzyca, T. B. and Saia, R. J., Solid State Technol., 6, 197 (1985).Google Scholar
4. Egitto, F. D., J. Electrochem. Soc. 126, 1354 (1980).Google Scholar
5. Burggraaf, P. S., Semicond. Int. 3, 23 (1980).Google Scholar
6. Hollahan, J. R. and Rosier, R. S. in Thin Film Processes, edited by Vossen, J. L. and Kern, W., (Academic Press, New York, 1978) pp. 335360.Google Scholar
7. Bonifield, Thomas D., in Deposition Technologies for Films and Coatings, edited by Bunshah, R. F. (Noyes Publications, Park Ridge, New Jersey, 1982) pp. 365384.Google Scholar
8. Gorczyca, T. B. and Gorowitz, B. in VLSI Electronics: Microstructure Science, Vol.8, edited by Einspruch, N. G. and Brown, D. M., (Academic Press, New York, 1984) pp. 6987.Google Scholar
9. Adams, A. C. in Plasma Deposited Thin Films, edited by Mort, J. and Jansen, F., (CRC Press, Boca Raton, FL, 1986) pp. 129160.Google Scholar
10. Pande, K. P., Nair, V. K. R. and Gutierrez, D., J. Appl. Phys. 54, 5436 (1983).Google Scholar
11. Catherine, Y. and Talebian, A., Jour. Electron. Mater. 17, 127 (1988).Google Scholar
12. Bailey, A. H., Darbyshire, D. A., Overbury, A. P., Pitt, C. W. and Newton, J., Vacuum 36, 139 (1986).Google Scholar
13. Alexander, J. H., Joyce, R. J. and Sterling, H. F. in Thin Film Dielectrics, edited by Vratny, F., (Electrochemical Society, New York, 1980) pp. 186197.Google Scholar
14. Williams, L. M. and Hess, D. W., J. Vac. Sci. Technol. A 1, 1810 (1983).Google Scholar
15. Secrist, D. R. and MacKenzie, J. D., Ceram. Bull. 45, 784 (1966).Google Scholar
16. Hess, D. W., J. Vac. Sci. Technol. A 2, 244 (1984).Google Scholar
17. Shimizu, M., Matsueda, Y., Shiosaki, T. and Kauabata, A., J. Cryst. Growth 71, 209 (1985).Google Scholar
18. Bauer, J., Biste, L. and Bolze, D., Phys. Status Solidi 39, 173 (1977).Google Scholar
19. Itoh, H., Kato, M. and Sugiyama, K., Thin Solid Films 146, 255 (1987).Google Scholar
20. Hyder, S. B. and Yep, T. O., J. Electrochem. Soc. 123, 1721 (1976).Google Scholar
21. Miyamota, H., Hirose, M. and Osaka, Y., Jpn. Jour. Appl. Phys. Pt. 2 Lett. 22, L216 (1983).Google Scholar
22. Liu, D. C., Valco, G. J., Skebe, G. G. and Kapoor, V. J. in Silicon Nitride Thin Insulating Films, edited by Kapoor, V. J., Stein, H. J. (Electrochemical Society, Pennington, NJ, 1983) pp. 141151.Google Scholar
23. Yuzuriha, T. H. and Hess, D. W., Thin Solid Films 140, 199 (1986).Google Scholar
24. Gafri, O., Grill, A., Itzhak, D., Inspecktor, A. and Avni, R., Thin Solid Films 72, 523 (1980).Google Scholar
25. Schmolla, W. and Hartnagel, H. L., J. Electrochem. Soc. 129, 2636 (1982).Google Scholar
26. Ojha, S. M., Phys. Thin Films 12, 237 (1982).Google Scholar
27. Weissmantel, C., J. Vac. Sci. Technol. 18, 179 (1981).Google Scholar
28. Weissmantel, C., Bewilgova, K., Breuer, K., Dietrich, D., Ebersbach, U., Erler, H. J., Rau, B. and Reisse, G., Thin Solid Films 96, 31 (1982).Google Scholar
29. Shanfield, S. and Wolfson, R., J. Vac. Sci. Technol. A 1, 323 (1983).Google Scholar
30. Chopra, K. L., Agarwal, V., Vankar, V. D., Deshpandey, C. V. and Bunshah, R. F., Thin Solid Films 126, 307 (1985).Google Scholar
31. Lin, P., Deshpandey, C., Doerr, H. J., Bunshah, R. F., Chopra, K. L. and Vankar, V. D., Thin Solid Films 154, 487 (1987).Google Scholar
32. Inagawa, K., Watanabe, K., Ohsone, H., Saitoh, K. and Itoh, A., J. Vac. Sci. Technol. A 5, 2696 (1987).Google Scholar
33. Mayr, P. and Stock, H. R., J. Vac. Sci. Technol. A 4, 2726 (1986).Google Scholar
34. Gleason, E. F. and Hess, D. W., in Plasma Processing, edited by Coburn, J. W., Gottscho, R. A. and Hess, D. W. (Mater. Res. Soc. Proc. 68, Pittsburgh, PA 1986) pp. 343349.Google Scholar
35. Anderson, D. A. and Spear, W. E., Philos. Mag. 35, 1 (1977).Google Scholar
36. Weider, H., Cardona, M. and Guarnieri, C. R., Phys. Status Solidi 92, 99 (1979).Google Scholar
37. Catherine, Y., Turban, G. and Grolleau, B., Thin Solid Films 76, 23 (1981).Google Scholar
38. Yoshihara, H., Mori, H. and Kiuchi, M., Thin Solid Films 76, 1 (1981).Google Scholar
39. Catherine, Y. and Turban, G., Thin Solid Films 60, 193 (1979).Google Scholar
40. Munekata, H., Murasato, S. and Kukimoto, H., Appl. Phys. Lett. 37, 538 (1980).Google Scholar
41. Townsend, W. G. and Uddin, M. E., Solid State Electron. 16, 39 (1973).Google Scholar
42. Suzuki, S. and Itoh, T., J. Appl. Phys. 54, 1466 (1983).Google Scholar
43. Donahue, T. J., Burger, W. R. and Reif, R., Appl. Phys. Lett. 44, 346 (1984).Google Scholar
44. Tasch, A., private communication.Google Scholar
45. Lucovsky, G., Richard, P. D., Tsu, D. V., Lin, S. Y. and Markunas, R. J., J. Vac. Sci. Technol A 4, 681 (1986).Google Scholar
46. Huelsman, A. D., Reif, R. and Fonstad, C. G., Appl. Phys. Lett. 50, 206 (1987).Google Scholar
47. Bachmann, P. K. and Messier, R., Chemical and Engineering News, May 15, 24 (1989).Google Scholar
48. Glass, J. T., Williams, B. E. and Davis, R. F., SPIE 877, 56 (1988).Google Scholar
49. Kobashi, K., Nishimura, K., Kawate, Y. and Horiuchi, T., Phys. Rev. B 38, 4067 (1988).Google Scholar
50. Tsuda, M., Nakajima, M. and Oikawa, S., J. Am. Chem. Soc. 108, 5780 (1986).Google Scholar
51. Frenklach, M. and Spear, K. E., J. Mater. Res. 3, 133 (1988).Google Scholar
52. Courtesy Microscience, Inc. Norwell, MA 02061.Google Scholar
53. Matsuo, S. in Handbook of Thin Film Deposition Processes and Techniques, edited by Schuegraf, K. K. (Noyes Publications, Park RIdge, NJ, 1988) pp. 147169.Google Scholar
54. Paisley, M. J., Sitar, Z., Posthill, J. B. and Davis, R. F., to be published in the Jour. Vac. Sci. and Technol.Google Scholar