Hostname: page-component-5c6d5d7d68-tdptf Total loading time: 0 Render date: 2024-08-18T04:23:46.196Z Has data issue: false hasContentIssue false

Plasma Passivation Scheme for III–V Compound Semiconductor Surfaces

Published online by Cambridge University Press:  21 February 2011

J. B. Theeten
Affiliation:
Laboratoires d'Electronique et de Physique Appliquée 3, avenue Descartes - 94450 LIMEIL-BREVANNES (FRANCE)
S. Gourrier
Affiliation:
Laboratoires d'Electronique et de Physique Appliquée 3, avenue Descartes - 94450 LIMEIL-BREVANNES (FRANCE)
P. Friedel
Affiliation:
Laboratoires d'Electronique et de Physique Appliquée 3, avenue Descartes - 94450 LIMEIL-BREVANNES (FRANCE)
M. Taillepied
Affiliation:
Laboratoires d'Electronique et de Physique Appliquée 3, avenue Descartes - 94450 LIMEIL-BREVANNES (FRANCE)
D. Arnoult
Affiliation:
Laboratoires d'Electronique et de Physique Appliquée 3, avenue Descartes - 94450 LIMEIL-BREVANNES (FRANCE)
D. Benarroche
Affiliation:
Laboratoires d'Electronique et de Physique Appliquée 3, avenue Descartes - 94450 LIMEIL-BREVANNES (FRANCE)
Get access

Abstract

Passivation of III-V compounds, especially GaAs, is still a major problem. Surface mechanisms related to stoichiometry defects (free As formation, vacancies) play an important role in the detrimental effects observed on GaAs devices (interface traps, leakage currents, parasitic transients …).

We first analyze the phenomena occuring at GaAs (100) surfaces exposed to several (H2,N2 ) multipolar plasmas, with the following methods : - in situ study of the surface morphology and roughness using ellipsometry and electron diffraction - chemical analysis using photoemission and Auger spectroscopy - electrical analysis in situ (Fermi level position deduced from photoemission, work function measurements) or ex situ (device characterization, C(V) analysis).

Using H2 based plasma treatments, a complete cleaning (oxide and contamination removal) can be obtained at moderate (below 200 °C) temperatures. This process, associated with surface nitridation and dielectric deposition, yield improved surface properties (lower recombination velocity and reduction of devices parasitic effects).

The case of Ga1−xInxAs (100) surfaces (with x varying from 0 to 0.53)is then discussed and a comparative study is given, indicating that native nitridation may also be a good solution,in this case.

Type
Research Article
Copyright
Copyright © Materials Research Society 1985

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 for a recent review, see for instance Rocchi, M., Proceedings of the ESSDERC Conference (Lille, France, Sept. 84) Physica B special issue.Google Scholar
2 Silicon nitride gallium arsenide MIS structure produces by plasma enhanced deposition. Bayraktaroglu, Burhan and Johnson, Robert L. J. Appl. Phys. 52 (1981).CrossRefGoogle Scholar
3 Improvements in GaAs/plasma deposited silicon nitride surface quality by predeposition GaAs surface treatment and post-deposition annealing. Clark, M.D. and Anderson, C.L., J. Vac. Sci. Technol. 21 (1982).CrossRefGoogle Scholar
4 Schwartz, G.P., Schwartz, B., Griffiths, J.E. and Sugano, T. J. Electrochem. Soc. 127, 2269 (1980).CrossRefGoogle Scholar
5 Influence of interfacial structure on the electronic properties of SiO2/InP MISFET's.Geib, K.M., Goodnick, S.M., Lin, D.Y., Gann, R.G., Wilmsen, C.W. and Wager, J.F.. J. Vac.Sci. Technol. B2, 516 (1984).CrossRefGoogle Scholar
6 Smith, P.J. an d Allan, D.A., Vacuum 34, 209 (1984).CrossRefGoogle Scholar
7 Kwan, P., Bhat, K.N., Borrego, J. M. and Gandhi, S.K. Solid State Electron. 26, 125 (1983).CrossRefGoogle Scholar
8 Langlade, P. and Makram-Ebeid, S., Proceeding of the 1 1th Intern. Conf. on GaAs and related compounds, Biarritz (Sept. 84), ed. The Institute of Physics.Google Scholar
9 Gourrier, S., Mircea, A. and Bacal, M., Thin Solid Silms 65, 315 (1980).CrossRefGoogle Scholar
10 Gourrier, S., Smit, L., Friedel, P. and Larsen, P.K. J. Appl. Phys. 54, 3993 (1983).CrossRefGoogle Scholar
11 Chang, R.P.H. and Darack, S. Appl. Phys. Lett. 38, 898 (1981) G. Smolinsky, R.P.H. Chang and T.M. Mayer J. Vac. Sci. Technol. 18, 12 (1981).CrossRefGoogle Scholar
12 Carette, T., Lannoo, M., Allan, G., Friedel, P. Accepted for publication in Surface Science.Google Scholar
13 Gardner, P.D., Narayan, S. Yegna and Yong-Hoon, Yun Thin Solid Films 117, 173 (1984).CrossRefGoogle Scholar
14 Gourrier, S. and Chane, J.P. Electron. Lett. 18, 156 (1982).CrossRefGoogle Scholar