Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T08:27:17.106Z Has data issue: false hasContentIssue false

Plasma Damage Effects in InAlN Field Effect Transistors

Published online by Cambridge University Press:  10 February 2011

F. Ren
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill, NJ 07974
J. R. Lothian
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill, NJ 07974
Y. K. Chen
Affiliation:
Lucent Technologies, Bell Laboratories, Murray Hill, NJ 07974
J. D. Mackenzie
Affiliation:
Department of Materials Science and Engineering, University of Floriúa, FL 32611
S. M. Donovan
Affiliation:
Department of Materials Science and Engineering, University of Floriúa, FL 32611
C. R. Abernathy
Affiliation:
Department of Materials Science and Engineering, University of Floriúa, FL 32611
C. B. Varturi
Affiliation:
Department of Materials Science and Engineering, University of Floriúa, FL 32611
J. W. Lee
Affiliation:
Department of Materials Science and Engineering, University of Floriúa, FL 32611
S. J. Pearton
Affiliation:
Department of Materials Science and Engineering, University of Floriúa, FL 32611
R. G. Wilson
Affiliation:
Hughes Research Laboratories, Malibu, CA 90265
Get access

Abstract

During gate mesa plasma etching of InN/InAlN field effect transistors the apparent conductivity in the channel can be either increased through three different mechanisms. If hydrogen is part of the plasma chemistry, hydrogen passivation of the shallow donors in the InAlN can occur, we find diffusion depths for 2H of ≥ 0.5 micron in 30 mins at 200°C. The hydrogen remains in the material until temperatures ≥ 700°C Energetic ion bombardment in SF6/O2 or BCl/Ar plasmas also compensates the doping in the InAlN by creation of deep acceptor states. Finally the conductivity of the immediate InAlN surface can be increased by preferential loss of N during BCl3 plasma etching, leading to poor rectifying contact characteristics when the gate metal is deposited on this etched surface. Careful control of plasma chemistry, ion energy and stoichiometry of the etched surface are necessary for acceptable pinch-off characteristics.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Binari, S. C. and Dietrich, H. B., in GaN and Related Materials (Edited by Pearton, S. J.), Gordon and Breach, New York (1996).Google Scholar
2. Chow, T. P. and Tayagi, R., IEEE Trans. Electron. Dev. 41, 1481 (1994).Google Scholar
3. Shur, M. S., Khan, A., Gelmont, B., Trew, R. J. and Shin, M. W., In Compound Semiconductors 1994 (Edited by Gorokin, H. and Mishra, U.), p. 419 IOP Publishing Bristol (1995).Google Scholar
4. Khan, M. A., Kuznia, J. N., Bhattarai, A. R. and Olson, D. T., Appl. Phys. Lett. 62 1786 (1993)Google Scholar
5. Binari, S. C., Proc. Electrochem. Soc. 95–21, 136 (1995).Google Scholar
6. Binari, S. C., Rowland, L. B., Kelner, G., Kruppa, W., Dietrich, H. B., Doverspike, K. and Gaskill, D. K., Compound Semiconductors 1994 (Edited by Gorokin, H. and Mishra, U.), p. 459 IOP Publishing Bristol (1995).Google Scholar
7. Mohammed, S., Salvador, A. A. and Morkoc, H., Proc. IEEE 83, 1306 (1995).Google Scholar
8. Binari, S. C., Rowland, L. B., Kruppa, W., Kelner, G., Doverspike, K. and Gaskill, D. K., Electron. Lett. 30, 1248 (1994).Google Scholar
9. Khan, M. A., Kuznia, J. N., Bhattarai, A. R. and Olson, D. T., Schaff, W. J., Burm, J. W. and Shur, M. S., Appl. Phys. Lett. 65, 1121 (1995)Google Scholar
10. Ozgur, A., Kin, W., Fan, Z., Botchkarev, A., Salvador, A., Mohammed, S. N., Sverdlov, B. and Morkoc, H., Electron. Lett. 31 1389 (1995).Google Scholar
11. Zolper, J. C., Shul, R. J., Baca, A. G., Wilson, R. G., Pearton, S. J. and Stali, R. A., Appl. Phys Lett. 66 (1996).Google Scholar
12. Khan, M. A., Chen, Q., Sun, C. J., Yang, J. W., Blasingame, M., Shur, M. S. and Park, H., Appl. Phys. Lett. 68 514(1996).Google Scholar
13. Abernathy, C. R., MacKenzie, J. D., Bharatan, S. R., Jones, K. S. and Pearton, S. J., J. Vac. Sci. Technol. A. 12 843 (1995).Google Scholar
14. Abernathy, C. R., MacKenzie, J. D., Bharatan, S. R., Jones, K. S. and Pearton, S. J., Appl. Phys. Lett. 66, 1632 (1995).Google Scholar
15. Abernathy, C. R., Pearton, S. J., Ren, F. and Wisk, P., J. Vac. Sci. Technol. B 11, 179 (1993).Google Scholar
16. Abernathy, C. R., Mat. Sci. Eng. Rep. R 14, 202 (1995).Google Scholar
17. Ren, F., Abernathy, C. R., Pearton, S. J. and Wisk, P. W., Appl. Phys. Lett. 64 1508 (1994).Google Scholar
18. Minsky, M. S., White, M. and Hu, E. L., Appl. Phys. Lett. 68 1531 (1996).Google Scholar
19. Mileham, J. R., Pearton, S. J., Abernathy, C. R., MacKenzie, J. D., Shul, R. J. and Kilcoyne, S. P., Appl. Phys. Lett. 68, 1531 (1996).Google Scholar
20. Pearton, S. J., Abernathy, C. R., Ren, F., Lothian, J. R., Wisk, P. and Katz, A., J. Vac. Sci Technol. A11, 1772 (1993).Google Scholar
21. Ping, A. T., Youtsey, C., Adesida, I., Khan, M. A. and Kuznia, J. N., J. Electron. Mater. 24, 229 (1995).Google Scholar
22. Shul, R. J., in GaN and Related Materials (Edited by Pearton, S. J.). Gordon and Breach, New York (1996).Google Scholar
23. Lee, H., Oberman, D. B. and Harris, J. S., Appl. Phys. Lett. 67, 1754 (1995).Google Scholar
24. Lin, M. E., Fan, Z., Ma, Z., Allen, L. H. and Morkoc, H., Appl. Phys. Lett. 64, 887 (1994).Google Scholar
25. Adesida, I., Mahajan, A., Andideh, E., Kahn, M. A., Olsen, D. T. and Kuznia, J. N., Appl. Phys. Lett. 63, 2777 (1994).Google Scholar
26. Pearton, S. J., Abernathy, C. R. and Ren, F., Appl. Phys. Lett. 64 2294 (1994).Google Scholar