Hostname: page-component-848d4c4894-jbqgn Total loading time: 0 Render date: 2024-06-27T06:50:38.447Z Has data issue: false hasContentIssue false

Plasma assisted nitrogen doping of ZnSe grown by MOVPE

Published online by Cambridge University Press:  22 February 2011

T. Cloitre
Affiliation:
Groupe d'Etudes de Semiconducteurs, Université Montpellier IICC 074 Place E. Bataillon, 34095 Montpellier Cedex 5
O. Briot
Affiliation:
Groupe d'Etudes de Semiconducteurs, Université Montpellier IICC 074 Place E. Bataillon, 34095 Montpellier Cedex 5
N. Briot
Affiliation:
Groupe d'Etudes de Semiconducteurs, Université Montpellier IICC 074 Place E. Bataillon, 34095 Montpellier Cedex 5
B. Gil
Affiliation:
Groupe d'Etudes de Semiconducteurs, Université Montpellier IICC 074 Place E. Bataillon, 34095 Montpellier Cedex 5
R.L. Aulombard
Affiliation:
Groupe d'Etudes de Semiconducteurs, Université Montpellier IICC 074 Place E. Bataillon, 34095 Montpellier Cedex 5
Get access

Abstract

We designed a plasma cell for nitrogen doping of ZnSe, using a metal organic vapour phase epitaxy (MOVPE) horizontal reactor. With the following growth conditions: Tg=300°C, P=1 Torr and a molar VI/II ratio of 5, successful p-type doping was obtained, as assessed by photoluminescence experiments, but with a free carrier concentration still too low to be detected by transport measurements. The passivation of nitrogen active species by hydrogen is discussed. The possible interaction with the carrier gas has been studied through the use of H2, N2 and He as carrier gases. We demonstrate that the use of helium as carrier gas leads to sensible improvement of the photoluminescence features related to nitrogen acceptor. On the other hand, the use of N2 as carrier gas leads to poor homogeneity of the layers with few effects on the doping level.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Haase, M.A., Qiu, J., Depuydt, J.M. and Cheng, H., Appl. Phys. Left. 59 (1991) 1272.Google Scholar
[2] Jeon, H., Ding, J., Patterson, W., Nurmikko, A.V., Xie, W., Grillo, D.C., Kobayashi, M. and Gunshor, R.L., Appl. Phys. Lett. 59 (1991) 3619.Google Scholar
[3] Huh, Jeung-Soo, Patnaik, S. and Jensen, K.F., J. Electron. Mater. 22 (1993) 509.Google Scholar
[4] Taudt, W., Scheider, A. and Heuken, M., to be published in proceedings of the Sixth International Conference on II-VI Compounds and Related Materials (Newport, Rhode Island, September 1993).Google Scholar
[5] Taskar, N.R., Khan, B.A., Dorman, D.R. and Shahzad, K., Appl. Phys. Lett. 62 (1993) 270.Google Scholar
[6] Wolk, J.A., Ager, J.W. III, Duxstad, K.J., Haller, E.E., Taskar, N.R., Dorman, D.R. and Olego, D.J., Appl. Phys. Left. 63 (1993) 2756.Google Scholar
[7] Imaizumi, M., Endoh, Y., Ohtsuka, K., Isu, T. and Nunoshita, M., Jpn. J. Appl. Phys. 32 (1993) L1725.Google Scholar
[8] Cloitre, T., Briot, N., Briot, O., Gil, B., Aulombard, R.L. and Jones, A.C., Mater. Sci. Eng. B21 (1993) 169.Google Scholar
[9] Heuken, M., Söllner, J., Guimaraes, F.E.G., Marquardt, K. and Heime, K., J. Cryst. Growth 117 (1992) 336 and ref. therein.Google Scholar
[10] Dean, P.J. and Merz, J.L., Phys. Rev. 178 (1969) 1310.Google Scholar
[11] Giling, L.J., J. Electrochem. Soc. 129 (1982) 634.Google Scholar