Hostname: page-component-77c89778f8-fv566 Total loading time: 0 Render date: 2024-07-22T21:42:08.180Z Has data issue: false hasContentIssue false

Piezoresistance Gauge Factors in Heavily Boron-Doped Polysilicon from Infrared Piezoreflectance

Published online by Cambridge University Press:  15 February 2011

J. Cali
Affiliation:
LEPES-CNRS, 25 av. des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France.
E. Bustarret
Affiliation:
LEPES-CNRS, 25 av. des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France.
P. Kleimann
Affiliation:
LEPES-CNRS, 25 av. des Martyrs, BP 166, F-38042 Grenoble Cedex 9, France.
M. Le Berre
Affiliation:
LPM-INSA, 20 av. Albert Einstein, 69621 Villeurbanne Cedex
D. Barbier
Affiliation:
LPM-INSA, 20 av. Albert Einstein, 69621 Villeurbanne Cedex
Get access

Abstract

Heavily boron-doped (4×1019 < [B] >1021 cm-3) polycrystalline silicon thin films on oxidized silicon cantilevers were studied by FTIR spectroscopy. The experimental reflectance spectra (400–7000 cm-l) were compared to those expected for a poly-Si/SiO2/c-Si/SiO2 multilayer where the doped layer is described by a simple Drude model. The resulting free carrier concentration and conductivity were checked against electrical measurements.

The optical response of the polycrystalline layer in the medium infrared range (400–3000 cmn−1) was shown to be affected by a static uniaxial stress applied along the film plane by a four point bending mechanical device. The resulting microscopic piezoresistivity longitudinal gauge factors in the 15 - 25 range are in close agreement with those deduced from conventional electrical piezoresistivity measurements on sub-millimeter size patterns. The effective range of applicability of this contactless method and the potential application of such layers to temperature-independent miniature pressure sensors are discussed

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Schubert, D., Jenschke, W., Uhlig, T., Schmidt, F. M., Sensors and Actuators, 11, p.145155 (1987).Google Scholar
2. Jeanjean, P., Sicart, J., Sellitto, P., Robert, J. L., Bustarret, E., Grieshaber, W., Cali, J., Berre, M. Le, Lemiti, M., Pinard, P., Conedera, V., J. Appl. Phys., 76(8), p. 4 68 2–4 6 88 (1994)Google Scholar
3. Liider, E., Sensors and Actuators, 10, p.9–2 3 (1986)Google Scholar
4. Borghesi, A., Bottazzi, P., Guizzetti, G., Nosenzo, L., Stella, A., Campisano, S. U., Rimini, E., Cembali, F., Servidori, M., Phys. Rev. B, 36, p. 95639568 (1987)Google Scholar
5. Scafidi, P., Cali, J., Bustarret, E., this volume.Google Scholar
6. Jeanjean, P., Sicart, J., Robert, J. L., Berre, M. Le, Pinard, P., Conedera, V., J. Phys. III France 3 , p. 4753 (1993)Google Scholar
7. Herrero, C. P., Stutzmann, M., Breitschwerdt, A., Phys. Rev. B, 43(2), p. 15551575 (1991)Google Scholar
8. Borghesi, A., Chen-Jia, C., Guizzetti, G., Nosenzo, L., Stella, A., J. Appl. Phys., 58(7), p. 27732775 (1985)Google Scholar
9. Mishima, Y., Hirose, M., Osaka, Y., J. Appl. Phys., 51(2), p. 11571159 (1980)Google Scholar
10. Bustarret, E., Grieshaber, W., Cowache, C., Sensors and Actuators A, 33, p. 3942 (1992)Google Scholar
11. Engstrom, H., J. Appl. Phys., 51(10), p. 52455249 (1980)Google Scholar
12. Richard, K., Ulrich, , Zhao, G., Thin solid Films, 224, p.6 3–68 (1993)Google Scholar
13. Germer, W., W. T6dt, Sensors and Actuators, 4, p. 183189 (1983)Google Scholar
14. French, P. J., Evans, G. R., Sensors and Actuators, 8, p. 219225 (1985)Google Scholar
15. Guo, S. W., Tan, S. S., Wang, W. Y., Mat. Res. Symp. Proc., 106, p. 23 1–2 36 (1988)Google Scholar