Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-26T08:48:28.237Z Has data issue: false hasContentIssue false

Piezoelectric Coefficients of Aluminum Nitride and Gallium Nitride

Published online by Cambridge University Press:  10 February 2011

C. M. Lueng
Affiliation:
Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong.
H. L. W. Chan
Affiliation:
Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong.
W. K. Fong
Affiliation:
Department of Electronic Engineering, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong.
C. Surya
Affiliation:
Department of Electronic Engineering, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong.
C. L. Choy
Affiliation:
Department of Applied Physics and Materials Research Center, The Hong Kong Polytechnic University, Hung Horn, Kowloon, Hong Kong.
Get access

Abstract

Aluminum nitride (AlN) and gallium nitride (GaN) thin films have potential uses in high temperature, high frequency (e.g. microwave) acoustic devices. In this work, the piezoelectric coefficients of wurtzite AlN and GaN/AlN composite film grown on silicon substrates by molecular beam epitaxy were measured by a Mach-Zehnder type heterodyne interferometer. The effects of the substrate on the measured coefficients are discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Michael Shur, S. and AsifKhan, M., Mat. Res. Bull., 22 (2), 44 (1997).10.1557/S0883769400032565Google Scholar
[2] Strite, S. and Morkog, H., J. Vac. Sci. Technol., B10 1237 (1992).10.1116/1.585897Google Scholar
[3] Maruska, H. P. and Tietjen, J. J., Appl. Phys. Lett., 59 327(1969).10.1063/1.1652845Google Scholar
[4] Bykhovski, A. D., Kaminski, V. V., Shur, M. S., Chen, Q. C. and Khan, M. A., Appl. Phys. Lett., 68 818(1996).10.1063/1.116543Google Scholar
[5] Mohammad, S. N., Salvador, Arnel A. and Morkog, Hadis, Proc. of the IEEE, 83 1306(1995).10.1109/5.469300Google Scholar
[6] Miyauchi, Michihiro, Ishikawa, Yukari and Shibata, Noriyoshi, Jpn. J. Appl. Phys., 31, L1714 (1992).10.1143/JJAP.31.L1714Google Scholar
[7] Kubota, K., Kobayashi, Y., and Fujimoto, K., J. Appl. Phys., 66 2984(1989).10.1063/1.344181Google Scholar
[8] Zhao, Z., Chan, H. L. W. and Choy, C. L., Ferroelectrics, 195, 35(1997).10.1080/00150199708260482Google Scholar
[9] Muensit, S. and Guy, I. L., Appl. Phys. Lett. 72, 1896(1998).10.1063/1.121219Google Scholar
[10] Kholkin, A. L., Witchrich, Ch., Taylor, D. V. and Setter, N., Rev. Sci. Instrum., 67, 1935(1996).10.1063/1.1147000Google Scholar
[11] Auld, B. A., Acoustic Fields and Waves in Solid Volume I, 2nd ed. (Krieger Publishing Company, Malabar, Florida, 1990). p. 271, 370, 381.Google Scholar
[12] Royer, D. and Kmetik, V., Electronics Letters, 28, 1828(1992).10.1049/el:19921166Google Scholar
[13] McNeil, Lauroe E., J. Am. Ceram. Soc., 76, 1132(1993).10.1111/j.1151-2916.1993.tb03730.xGoogle Scholar
[14] K., Tsubouchi, K., Sugai, and N., Mikoshiba, Proc. IEEE Ultrason. Symp., 375 (1981).Google Scholar
[15] Supasarote Muensit, PhD thesis, Macquarie University, 1998.Google Scholar