Hostname: page-component-7479d7b7d-767nl Total loading time: 0 Render date: 2024-07-12T01:35:11.344Z Has data issue: false hasContentIssue false

The Physics of Plasma Deposition of Microcrystalline Silicon

Published online by Cambridge University Press:  28 February 2011

B. Drevillon
Affiliation:
Laboratoire de Physique des Interfaces et Couches Minces (PICM), Ecole Polytechnique, 91128 Palaiseau CEDEX, France.
I. Solomon
Affiliation:
Laboratoire de Physique de la Matière Condensée (PMC), Ecole Polytechnique, 91128 Palaiseau CEDEX, France.
M. Fang
Affiliation:
Laboratoire de Physique de la Matière Condensée (PMC), Ecole Polytechnique, 91128 Palaiseau CEDEX, France.
Get access

Abstract

The growth of microcrystalline silicon (μc-Si), deposited by a succession of silane and hydrogen plasmas, is investigated in situ by ellipsometry in the visible and near UV-range. It is found that the amorphous tissue is more affected by the hydrogen etching than the crystallites. The model of “selective etching” emerges from these measurements. Although this model is compatible with the “partial chemical equilibrium” of Vep̌ek, it is somewhat more general and explains the porous nature of the (μc-Si) as well as the many atomic layers deposition-etching sequences.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Vepřek, S., J. Chem. Phys. 57, 952 (1972).Google Scholar
2. Matsuda, A., J. Non-Cryst. Solids 59&60, 767 (1983).Google Scholar
3. Tsai, C.C., Amorphous Silicon and Related Materials, Vol. 1, ed. Fritzsche, H. (World Sciencific, Singapore, 1989) 123.Google Scholar
4. Shimizu, I., Hanna, J. and Shirai, H., Mat. Res. Soc. Symp. Proc. 164, 195 (1990).Google Scholar
5. Vepřek, S., Mat. Res. Soc. Symp. Proc. 164, 39 (1990).Google Scholar
6. Kumar, S., Drévillon, B. and Godet, C., J. Appl. Phys. 60, 1542 (1986).Google Scholar
7. Collins, R. W., Appl. Phys. Lett. 48, 843 (1986).Google Scholar
8. Fang, M. and Drévillon, C., J. Appl. Phys. 70, 4894 (1991).Google Scholar
9. Perrin, J., J. Non-Cryst. Solids 137&138, 639 (1991).Google Scholar
10. Nomoto, K., Urano, Y., Guizot, J.L., Ganguly, G. and Matsuda, A., Jpn J. Appl. Phys. 29, L1372(1990).Google Scholar
11. Drévillon, B., Perrin, J., Marbot, R., Violet, A. and Dalby, J.L., Rev. Sci. Instrum. 53, 969 (1982).Google Scholar
12. Acher, O., Bigan, E. and Drévillon, C., Rev. Sci. Instrum. 60, 65 (1989).Google Scholar
13. Asano, A., Appl. Phys. Lett. 56, 533 (1990).Google Scholar
14. Fang, M., Chevrier, J.B. and Drévillon, C., J.Non-Cryst. Solids 137&138, 791 (1991).Google Scholar
15. Otobe, M. and Oda, S., Jpn. J. Appl. Phys. 31, 1948 (1992).Google Scholar
16. Fang, M. and Drévillon, c., J. Appl. Phys. 71, 5445 (1992).Google Scholar
17. Fang, M., Doctor Thesis, Ecole Polytechnique, 1992 (unpublished).Google Scholar
18. Blayo, N. and Drévillon, B., J. Non-Cryst. Solids 137&138, 775 (1991).Google Scholar
19. Moustakas, T.D., Weitz, D.A., Prestridge, E.B. and Fiedman, R., Mat. Res. Soc. Symp. Proc. 38, 401 (1985).Google Scholar
20. Chenevas-Paule, A., Poly-micro-crystalline and Amorphous Semiconductors, ed. Pinard, S. and Kalbitzer, S. (Les éditions de Physique, Les Ulis, 1984) p. 629.Google Scholar