Hostname: page-component-848d4c4894-r5zm4 Total loading time: 0 Render date: 2024-06-25T16:04:51.979Z Has data issue: false hasContentIssue false

Photovoltaic Device Applications of Porous Silicon

Published online by Cambridge University Press:  28 February 2011

Y. S. Tsuo
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
M. J. Heben
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
X. Wu
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Y. Xiao
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
C. A. Moore
Affiliation:
University of Denver, Denver, CO 80208
P. Verlinden
Affiliation:
SunPower Corp., Sunnyvale, CA 94086
S. K. Deb
Affiliation:
National Renewable Energy Laboratory, Golden, CO 80401
Get access

Abstract

We report on the results of our investigation of using porous Si to enhance the performance of crystalline silicon photovoltaic solar cells. Possible approaches include using the porous Si for (1) surface texturing to enhance light trapping, (2) front or back surface fields because of its wider bandgap, and (3) photon color conversion of blue light to longer wavelengths that have higher quantum efficiency in a Si solar cell. In our surface texturing study, a porous-Si-covered single-crystal Si wafer showed an integrated reflectance of only 1.4% at 500-nm wavelength compared to about 40% for a polished Si surface. For our solar cell study, we used a point-contact cell structure with diffused p+ and n+ point contacts on the back of the cell. This cell structure allows us to form the porous Si on the front surface after both the junction formation and the evaporation and alloying of metal contacts.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Richter, A., Steiner, P., Kozlowski, F., and Lang, W., IEEE Electron Device Lett. 12, 691 (1991)Google Scholar
2. Paul Maruska, H., Namavar, F., and Kalkhoran, N.M., Appl. Phys. Lett. 61, 1338 (1992).Google Scholar
3. Koshida, N. and Koyama, H. in Light Emission from Silicon, edited by Iyer, S.S., Collins, R.T., and Canham, L.T. (Mater. Res. Soc. Symp. Proc. 256, Pittsburgh, PA, 1992) pp. 219222.Google Scholar
4. Zheng, J.P., Jiao, K.L., Shen, W.P., Anderson, W.A., and Kwok, H.S., Appl. Phys. Lett. 61, 459 (1992).Google Scholar
5. Smestad, G., Kunst, M., and Vial, C., Solar Energy Materials and Solar Cells 26, 277 (1992).Google Scholar
6. Fonash, S.J., Solar Cell Device Physics, (Academic Press, New York, 1981).Google Scholar
7. Swanson, R.M., Solar Cells 17, 85 (1986).Google Scholar
8. King, R.R., Sinton, R.A., and Swanson, R.M., Appl. Phys. Lett. 54, 1460 (1989)Google Scholar
9. King, R.R., Sinton, R.A., and Swanson, R.M., Contractor Report #SAND91–7003 to Sandia National Laboratory “One-Sun, Single-Crystalline Silicon Solar Cell Research,” June 1991.Google Scholar
10. Heben, M.J., Xiao, Y., McCullough, J.M., Tsuo, Y.S., Pankove, J.I., and Deb, S.K., Am. Phys. Soc. Conf. Proc, to be published.Google Scholar
11. Xiao, Y., Heben, M.J., McCullough, J.M., Tsuo, Y.S., Pankove, J.I., and Deb, S.K., submitted to Appl. Phys. Lett.Google Scholar
12. Dyer, L.D., J. Electrochem. Soc. 125, 256C (1978).Google Scholar
13. Borrego, J.M., Gutmann, R.J., Jensen, N., and Paz, O., Solid-State Electron. 30, 195 (1987).Google Scholar
14. Passari, L. and Susi, E., J. Appl. Phys. 54, 3935 (1983).Google Scholar
15. Yablonovitch, E., Allara, D.L., Chang, C.C., Gmitter, T., and Bright, T.B., Phys. Rev. Lett. 57, 249 (1986).Google Scholar