Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-06-20T06:52:27.654Z Has data issue: false hasContentIssue false

Photoreflectance Characterization of InGaAs/GaAs Superlattices Grown on [111]-Oriented Substrates

Published online by Cambridge University Press:  22 February 2011

R. G. Rodrigues
Affiliation:
Electrical, Computer, and Systems Engineering Dep. Rensselaer Polytechnic Institute, Troy, NY
K. Yang
Affiliation:
Physics Department Rensselaer Polytechnic Institute, Troy, NY
L. J. Schowalter
Affiliation:
Physics Department Rensselaer Polytechnic Institute, Troy, NY
J. M. Borrego
Affiliation:
Electrical, Computer, and Systems Engineering Dep. Rensselaer Polytechnic Institute, Troy, NY
Get access

Abstract

We report the results of a photoreflectance (PR) study of InGaAs/GaAs strained-layer quantum wells and superlattices (SLSs) grown by MBE on [111]B GaAs substrates. Under our measurement conditions, the PR spectra display features we can relate to the bandgaps of both materials and to optical transitions in the quantum structures. Using the photovoltaic effect to vary the surface electric field of our i-n+ and p+-i-n+ samples in a strictly contactless manner, we find optical transitions red-shifting with increasing intensity of illumination from a CW HeNe laser in [111]-grown structures, a well known effect which can be attributed to the straingenerated electric field (SGEF) present in these structures. We also find experimental support for the predicted effectiveness of free-carriers in screening the SGEF and thereby originating highly non-linear absorption.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References:

1 Yang, K. and Schowalter, L. J., J. Vac. Sci. Technol. B 11, 779 (1993).Google Scholar
2 Smith, D. L., Solid State Comm., 57, 919 (1986).CrossRefGoogle Scholar
3 Laurich, B. K., Elcess, K., Fonstad, C.G., Berry, J.G., Mailhiot, C., and Smith, D.L., Phys. Rev. Lett. 62, 649 (1989).Google Scholar
4 Cardona, M., Modulation Spectroscopy', (Academic Press, New York, 1969).Google Scholar
5 Aspnes, D. E., in Handbook on Semiconductors, edited by Moss, T.S. (North-Holland, New York, 1990), Vol. 2, p. 109.Google Scholar
6 Glembocki, O. J. and Shanabrook, B. V., in Semiconductors and Semimetals, edited by Willardson, R. K., Beer, A. C. and Weber, E. R., Vol. 36, edited by Seiler, D. G. and Littler, C. L. (Academic Press, Boston, 1992), p. 221.Google Scholar
7 Pollak, F. H. and Shen, H., Mat. Sci. Eng. R 10, 275 (1993).Google Scholar
8 Mailhiot, C. and Smith, D. L., Phys. Rev. B, 35, 1242 (1987).Google Scholar
9 Caridi, E. A., Chang, T. Y., Goossen, K. W., and Eastman, L. F., Appl. Phys. Lett. 56, 659 (1990).CrossRefGoogle Scholar
10 Shen, H., Dutta, M., Chang, W., Moekirk, R., Kim, D. M., Chung, K. W., Ruden, P. P., Nathan, M. I., and Stroscio, M. A., Appl. Phys. Lett. 60, 2400 (1992).CrossRefGoogle Scholar
11 Ksendzov, A., Shen, H., Pollak, F. H., and Bour, D. P., SPIE, Vol. 1283, 241 (1990).Google Scholar
12 Shen, S. C., Shan, W., Fang, X. M., Hang, Z., and Pollak, F. H., SPIE, Vol.1286, 221 (1990).Google Scholar
13 Weisbuch, C. and Winter, B., Quantum Semiconductor Sructures, p. 93, (Academic Press, Boston, 1991).Google Scholar
14 Mendez, E. E., Agullo-Rueda, F. and Hong, J.M., Appl. Phys. Lett. 60, 2624 (1988).Google Scholar
15 Dignam, M. M. and Sipe, J. E., Phys. Rev. Lett. 64, 1797 (1990).CrossRefGoogle Scholar
16 Aspnes, D. E., Phy. Rev. B 10, 4228 (1974).CrossRefGoogle Scholar