Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-26T07:31:15.861Z Has data issue: false hasContentIssue false

Photonic Crystals: Shaping the Flow of Thermal Radiation

Published online by Cambridge University Press:  31 January 2011

Ivan Čelanović
Affiliation:
ivanc@mit.edu, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Michael Ghebrebrhan
Affiliation:
mghebre@MIT.EDU, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Yi Xiang Yeng
Affiliation:
yxyeng@MIT.EDU, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
John Kassakian
Affiliation:
jgk@mit.edu, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Marin Soljačić
Affiliation:
soljacic@MIT.EDU, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
John Joannopoulos
Affiliation:
joannop@MIT.EDU, Massachusetts Institute of Technology, Cambridge, Massachusetts, United States
Get access

Abstract

In this paper we explore theory, design, and fabrication of photonic crystal (PhC) based selective thermal emitters. In particular, we focus on tailoring spectral and spatial properties by means of resonant enhancement in PhC's. Firstly, we explore narrow-band resonant thermal emission in photonic crystals exhibiting strong spectral and directional selectivity. We demonstrate two interesting designs based on resonant Q-matching: a vertical cavity enhanced resonant thermal emitter and 2D silicon PhC slab Fano-resonance based thermal emitter. Secondly, we examine the design of 2D tungsten PhC as a broad-band selective emitter. Indeed, based on the resonant cavity coupled resonant modes we demonstrate a highly selective, highly-spectrally efficient thermal emitter. We show that an emitter with a photonic cut-off anywhere from 1.8 μm to 2.5 μm can be designed.

Type
Research Article
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Yablonovitch, E. Phys. Rev. Lett. 58, 2059 (1987)Google Scholar
2 John, S. Phys. Rev. Lett. 58, 2486 (1987).Google Scholar
3 Greffet, J. J. Carminati, R. Joulain, K. Mulet, J. P. Mainguy, S. and Chen, Y., Nature (London) 416, 61, 2002.Google Scholar
4 Pralle, M. U. Moelders, N. McNeal, M. P. Puscasu, I. Greenwald, A. C. Daly, J. T. Johnson, E. A., George, T. Choi, D. S. El-Kady, I., and Biswas, R. Appl. Phys. Lett. 81, 4685 (2002).Google Scholar
5 Celanovic, I. Perreault, D. and Kassakian, J. Phys. Rev. B 72, 075127 (2005).Google Scholar
6 Chan, D. L. C. Celanovic, I. Joannopoulos, J. D. and Soljaéiæ, M., Phys. Rev. A 74, 064901 (2006).Google Scholar
7 Cornelius, C. M. and Dowling, J. P. Phys. Rev. A 59, 4736 (1999).Google Scholar
8 Heinzel, A. Boerner, V. Gombert, A. Blasi, B. Wittwer, V. and Luther, J. J. Mod. Opt. 47, 2399 (2000).Google Scholar
9 Sai, H. Kanamori, Y. and Yugami, H. Appl. Phys. Lett. 82, 1685 (2003).Google Scholar
10 Fleming, J. G. Lin, S. Y. El-Kady, I., Biswas, R. and Ho, K. M. Nature (London) 417, 52 (2002).Google Scholar
11 Haus, H. A. Waves and Fields in Optoelectronics, Prentice-Hall, Englewood Cliffs, NJ, (1984).Google Scholar
12 Fan, S. and Joannopoulos, J. D. Phys. Rev. B 65, 235112 (2002).Google Scholar
13 Celanovic, I. Jovanovic, N. and Kassakian, J. Appl. Phys. Lett. 92, 193101 (2008).Google Scholar
14 Palik, E. D. Handbook of Optical Constants of Solids _Academic, Orlando (1985).Google Scholar