Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-19T04:51:11.816Z Has data issue: false hasContentIssue false

Photoluminescence Related to the 2-Dimensional Electron Gas in Modulation Doped GaN/AlGaN Structures

Published online by Cambridge University Press:  21 February 2011

J.P. Bergman
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S - 58183 Linköping, Sweden. ped@ifm.liu.se.
T. Lundström
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S - 58183 Linköping, Sweden. ped@ifm.liu.se.
B. Monemar
Affiliation:
Department of Physics and Measurement Technology, Linköping University, S - 58183 Linköping, Sweden. ped@ifm.liu.se.
H. Amano
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, Nagoya, Japan
I. Akasaki
Affiliation:
Department of Electrical and Electronic Engineering, Meijo University, Nagoya, Japan
Get access

Abstract

We report low temperature photoluminescence (PL) spectra related to a two-dimensional electron gas confined at a GaN/AlGaN heterointerface. The recombination between electrons confined in the bottom of the interface potential and photoexcited holes causes a broad PL emission about 50 meV below the bulk GaN exciton emission. A second emission, attributed to the recombination of electrons in the first excited level at the interface, is also observed close to the excitonic band gap in GaN. The data agrees with a self consistent calculation of the energy levels and the electron concentration at the interface. Similar PL data from a modulation doped AlGaN/GaN quantum well exhibit three PL emissions related to the 2D electron gas.

Type
Research Article
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1 Bastard, G. 1992 Wave Mechanics Applied to Semiconductor Heterostructures (Paris: Les Editions de Physique).Google Scholar
2 Dingle, R., Stormer, H.L., Gossard, A.C., and Wiegmann, W., Appl. Phys. Lett. 33 665667 (1978)Google Scholar
3 Yuan, Y.R., Pudensi, M.A.A., Vawter, C.A., and Merz, J.L., J. Appl. Phys. 58, 397403 (1985).Google Scholar
4 Kukushkin, I.V., Klitzing, K.V., and Ploog, K., Phys. Rev. B. 37, 85098512, (1988).Google Scholar
5 Zhao, Q.X., Bergman, J.P., Holtz, P.O., Monemar, B., Hallin, C., Sundaram, M., Merz, J.L., and Gossard, A.C., Semicond. Sci. Technol. 5, 884889 (1990).Google Scholar
6 Bergman, J.P., Zhao, Q.X., Holtz, P.O., Monemar, B., Sundaram, M., Merz, J.L., and Gossard, A.C., Phys. Rev. B. 43,47714776 (1991).Google Scholar
7 Zhao, Q.X., Holtz, P.O., Monemar, B., Lundström, T., Wallin, J., and Landgren, G., Phys. Rev. B. 48 11891194(1993).Google Scholar
8 Kahn, M.A., van Hove, J.M., Kuznia, J.N., and Olson, D.T., Appl. Phys. Lett. 58, 24082410 (1991).Google Scholar
9 Nakamura, S., Mukai, T., and Senoh, M., J. Appl. Phys. 71, 55435549 (1992).Google Scholar
10 Shan, W., Schmidt, T.J., Yang, X.H., Hwang, S.J., Song, J.J., and Goldenberg, B., Appl. Phys. Lett. 66, 985987 (1995).Google Scholar
11 Barker, A.S., and Ilegems, M., Phys. Rev. B. 7, 743 (1973).Google Scholar
12 Monemar, B., Phys. Rev. B. 10, 676 (1974).Google Scholar
13 Perry, P.B., and Rutz, R.F., Appl. Phys. Lett. 33, 319 (1978).Google Scholar
14 Baur, J., Meier, K., Kunzer, M., Kaufmann, U., and Schneider, , Appl. Phys. Lett. 65, 2211 (1994).Google Scholar