Hostname: page-component-848d4c4894-ttngx Total loading time: 0 Render date: 2024-05-09T08:24:24.296Z Has data issue: false hasContentIssue false

Photoluminescence Of Zincselenide Single Crystals Annealed In Zinc Or Selenium Atmosphere

Published online by Cambridge University Press:  21 February 2011

Kenji Yoshino
Affiliation:
College of Liberal Arts and Sciences, Okayama University, 2-1-1 Tsushima-naka, Okayama, 700, Japan
Yasushi Matsushima
Affiliation:
College of Liberal Arts and Sciences, Okayama University, 2-1-1 Tsushima-naka, Okayama, 700, Japan
Hiroyoshi Kinoshita
Affiliation:
College of Liberal Arts and Sciences, Okayama University, 2-1-1 Tsushima-naka, Okayama, 700, Japan
Makoto Hiramatsu
Affiliation:
College of Liberal Arts and Sciences, Okayama University, 2-1-1 Tsushima-naka, Okayama, 700, Japan
Get access

Abstract

Zincselenide single crystals grown by the sublimation method are annealed in Zn or Se atmosphere. The annealing effects are examined by means of photoluminescence (PL) and reflection spectroscopy at 4.2 K. In the PL spectrum for the as-grown crystal, bound exciton lines (I2, I1) are observed. For the Zn-annealed crystal, the free exciton line is clearly observed. For the Se-annealed crystal, peak positions of all lines shift to the higher energies and all lines become sharp, compared with the spectra for the as-grown crystal. It is concluded that Sc-vacancies affect the bandgap energy more than Zn-vacancies do.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Hite, G. E., Marple, D. T. F., Aven, M. and Segall, B., Phys. Rev. 156, 850 (1967).Google Scholar
2. Isshiki, M., Yoshida, T., Igaki, K., Uchida, W. and Suto, S., J. Cryst. Growth 72,162 (1985).Google Scholar
3. Huang, X. M. and Igaki, K., J. Cryst. Growth 78,24 (1986).Google Scholar
4. Dean, P. J. and Merz, J. L., Phys. Rev. 178,1310 (1969).10.1103/PhysRev.178.1310Google Scholar
5. Terashima, K., Kawachi, M. and Takena, M., J. Cryst. Growth 104,467 (1990).10.1016/0022-0248(90)90149-FGoogle Scholar
6. Kikuma, I., Matsuo, M. and Komuro, T., Jpn. J. Appl. Phys. 30,2718 (1991).Google Scholar
7. Maier, W. and Klingshirn, C., Solid State Com. 28,13 (1978).Google Scholar
8. Neumark, G. F., Herko, S. P., McGee, T. F. III, and Fitzpatrick, B. J., Phys. Rev. 53, 604 (1984).Google Scholar
9. Ohishi, M., Jpn. J. Appl. Phys. 25, 1546 (1986).Google Scholar
10. Kikuma, I. and Furukoshi, M., Jpn. J. Appl. Phys. 24, L1941 (1985).10.1143/JJAP.24.L941Google Scholar
11. Fujita, S., Mimoto, H., Takabe, H. and Noguchi, T., J. Cryst. Growth 47,326 (1979).Google Scholar
12. Kaldis, E., J. Phys. Chem. Solids 26,1761 (1965).Google Scholar
13. Fisher, A. G., J. Electrochem. Soc. 106, 830 (1959).Google Scholar
14. Hplton, W. C., Watt, R. K. and Stinedurf, R. D., J. Cryst. Growth 6,97 (1969).10.1016/0022-0248(69)90099-2Google Scholar
15. Kiyosawa, T., Igaki, K. and Ohashi, N., Mat. Trans. JIM 13,248 (1972).Google Scholar
16. Roppischer, H., Jacobs, J. and Novikov, B. V, Phys. Stat. Sol. (a) 27,123 (1975)Google Scholar