Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-05T15:35:18.306Z Has data issue: false hasContentIssue false

Photoluminescence of Sige Alloys Implanted with Erbium

Published online by Cambridge University Press:  22 February 2011

H.B. Erzgräber
Affiliation:
Institute of Semiconductor Physics, 15230 Frankfurt (Oder), Germany
P. Gaworzewski
Affiliation:
Institute of Semiconductor Physics, 15230 Frankfurt (Oder), Germany
K. Schmalz
Affiliation:
Institute of Semiconductor Physics, 15230 Frankfurt (Oder), Germany
D. Krôger
Affiliation:
Institute of Semiconductor Physics, 15230 Frankfurt (Oder), Germany
T. Morgenstern
Affiliation:
Institute of Semiconductor Physics, 15230 Frankfurt (Oder), Germany
A. Osinsky
Affiliation:
Ioffe Physico-Technical Institute, 194021 Petersburg, Russia
M. Vatnik
Affiliation:
Ioffe Physico-Technical Institute, 194021 Petersburg, Russia
Get access

Abstract

The 1.54μm emission of erbium implanted SiGe alloys was investigated as a function of oxygen and germanium concentrations as well as defect densities. Samples of SiGe layers grown by atmospheric pressure chemical vapor deposition technique which contain high concentrations of grown-in oxygen in the 10 19 - 1020 cm−3 range and 2 - 24 % Ge were chosen for the experiments. By using rapid thermal annealing in nitrogen atmosphere, a high optical activation of Er was found by photoluminescence. In samples with low defect densities nearly one third of the implanted Er ion dose could be detected in form of electrically active donors by spreading resistance measurements. The behavior of different SiGe : Er layers, based on sample property and annealing condition, suggests that more than only one type of luminescent Er-complex is present.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Ennen, H., Schneider, J., Pomrenke, G., and Axmann, A., Appl. Phys. Lett. 43, 943 (1983).CrossRefGoogle Scholar
2. Ennen, H., Pomrenke, G.S., Axmann, A., Eisele, K., Haydl, W., and Schneider, J., Appl. Phys. Lett. 46, 361 (1985).Google Scholar
3. Moutonnet, D., L'Haridon, H., Favennec, P.N., Salvi, M., Gauneau, M., D'avitaya, F.A., and Chroboczek, J., Mater. Sci. and Engineer. B 4, 75 (1989).Google Scholar
4. Oestereich, T., Swiatkowski, C., and Broser, I., Appl. Phys. Lett. 56, 446 (1990).Google Scholar
5. Xie, Y.H., Fitzgerald, E.A., and Mii, Y.J., J. Appl. Phys. 70, 3223 (1991).Google Scholar
6. Michel, J., Benton, J.L., Ferrante, R.F., Jacobson, D.C., Eaglesham, D.J., Fitzgerald, E.A., Xie, Y.-H., Poate, J.M., and Kimerling, L.C., J. Appl. Phys. 70, 2672 (1991).Google Scholar
7. Michel, J., Kimerling, L.C., Benton, J.L., Eaglesham, D.J., Fitzgerald, E.A., Jacobson, D.C., Poate, J.M., Xie, Y.-H., and Ferrante, R.F., Mater. Sci. Forum 83–87, 653 (1992).Google Scholar
8. Coffa, S., Priolo, F., Franzo, G., Bellani, V., Carrera, A., and Spinella, C., to be publ. in Phys. Rev. BGoogle Scholar
9. Benton, J.L., Michel, J., Kimerling, L.C., Jacobson, D.C., Xie, Y.-H., Eaglesham, D.J., Fitzgerald, E.A., and Poate, J.M., J. Appl. Phys. 70, 2667 (1991).CrossRefGoogle Scholar
10. Eaglesham, D.J., Michel, J., Fitzgerald, E.A., Jacobson, D.C., Poate, J.M., Benton, J.L., Polman, A., Xie, Y.-H., and Kimerling, L.C., Appl. Phys. Lett. 58, 2797 (1991).Google Scholar
11. Favennec, P.F., L'Haridon, H., Moutonnet, D., Salvi, M., and Gauneau, G., Jap. J. Appl. Phys. 29, L524 (1990)Google Scholar
12. Priolo, F., Coffa, S., Franzo, G., Spinella, C., Carrera, A., and Bellani, V., J. Appl. Phys. 74, 1 (1993).Google Scholar
13. Adler, D.L., Jacobson, D.C., Eaglesham, D.J., Marcus, M.A., Benton, J.L., Poate, J.M., and Citrin, P.H., Appl. Phys. Lett. 61, 2181 (1992).Google Scholar
14. Noel, J.-P., Rowell, N.L., Jackman, T.E., Perovic, D.D., and Houghton, D.C., Mater. Res. Soc. Ext. Abstr. EA- 21, 11 (1990).Google Scholar
15. Morgenstern, T., Babanskaja, I., Morgenstern, G., Schmalz, K., Gaworzewski, P, Zaumseil, P., Kruger, D., Tittelbach-Helmrich, K., and Erzgraber, H.B., Phys. Concepts and Mater. for Novel Optoel. Dev. Appl., Trieste (1993)Google Scholar
16. Tang, Y.S., Jingping, Z., Heasman, K.C., and Sealy, B.J., Sol. State Commun. 72, 991 (1989).Google Scholar
17. Tang, Y.S., Heasman, K.C., Gillin, W.P., and Sealy, B.J., Appl. Phys. Lett. 55, 432 (1989).CrossRefGoogle Scholar
18. Erzgriber, H.B., Kissinger, G., Kruger, D., Morgenstern, T., Schmalz, K., Schilz, J., Kurten, M., Osinsky, A., Proc. 17th ICDS, Gmunden Austria, 1993, in pressGoogle Scholar
19. Yassievich, I.N., Kimerling, L.C., Semicond. Sci. Technol. 7, 1 (1993).Google Scholar
20. Sobolev, N.A., Alexandrov, O.V., Gresserov, B.N., Gusinskii, G.M., Naidenov, V.O., Sheck, E.I., Stepanov, V.I., Vyzhigin, Yu.V., Chepnik, L.F., and Troshina, E.P., Solid State Phe -nomena 32 33, 83 (1993).Google Scholar