Hostname: page-component-5c6d5d7d68-txr5j Total loading time: 0 Render date: 2024-08-18T11:01:03.459Z Has data issue: false hasContentIssue false

Photoluminescence of GaN Grown by Molecular Beam Epitaxy on Freestanding GaN Template

Published online by Cambridge University Press:  01 February 2011

M. A. Reshchikov
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
F. Yun
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
D. Huang
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
L. He
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
H. Morkoç
Affiliation:
Virginia Commonwealth University, Richmond, VA 23284, U.S.A.
S. S. Park
Affiliation:
Samsung Advanced Institute of Technology, P.O.Box 111, Suwon, Korea 440-600
K. Y. Lee
Affiliation:
Samsung Advanced Institute of Technology, P.O.Box 111, Suwon, Korea 440-600
Get access

Abstract

We studied photoluminescence (PL) of GaN layers grown by molecular beam epitaxy on freestanding high-quality GaN templates. The layers with thickness of ∼ 1 νm were grown under Ga-rich conditions using radio-frequency plasma as a nitrogen source. The PL spectra from both the epilayer and the substrate contain a plethora of very sharp peaks related to excitonic transitions. Through the analysis of the excitonic part of the spectra, we have identified two shallow donors with the binding energies of 28.8 and 32.6 meV, attributed to SiGa and ON, respectively. The PL spectra involved also emissions due to shallow donor-acceptor pair transitions with the main peak at 3.26 eV and a broad band peaking at ∼2.5 - 2.6 eV (green band). The green bands in the GaN substrate and GaN overgrown layer have different energy positions invoking the suggestion that they must have their genesis in different defect centers.

Type
Research Article
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Teisseure, H., Nowak, G., Leszczynski, M., Grzegory, I., Bockowski, M., Krukowski, S., Porowski, S., Mayer, M., Pelzmann, A., Kamp, M., Ebeling, K. L., and Karczewski, G., MRS Internet J. Nitride Semicond. Res. 1, 13 (1996)Google Scholar
2. Pakula, K., Wysmolek, A., Korona, K. P., Baranowski, J. M., Stepniewski, R., Grzegory, I., Bockowski, M., Jun, J., Krukowski, S., Wroblewski, M., and Porowski, S., Solid State Commun. 97, 919 (1996)Google Scholar
3. Miskys, C. R., Kelly, M. K., Ambacher, O., Martinez-Criado, G., and Stutzmann, M., Appl. Phys. Lett. 77, 1858 (2000)Google Scholar
4. Morkoç, H., “Comprehensive Characterization of Hydride VPE Grown GaN Layers and TemplatesMaterial Science and Engineering Reports (MSE-R), Vol. 259, R33/5-6, pp. 173, (2001), and references therein.Google Scholar
5. Reshchikov, M. A., Huang, D., Yun, F., He, L., Morkoç, H., Reynolds, D. C., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 79, 3779 (2001)Google Scholar
6. Rodina, A. V., Dietrich, M., Göldner, A., Eckey, L., Hoffmann, A., Efros, Al. L., Rosen, M., and Meyer, B. K., Phys. Rev. B 64, 115204 (2001)Google Scholar
7. Kornitzer, K., Grehl, M., Thonke, K., Sauer, R., Kirchner, C., Schwegler, V., Kamp, M., Leszczynski, M., Grzegory, I., and Porowski, S., Physica B 273-274, 66 (1999)Google Scholar
8. Meyer, B. K., Mat. Res. Soc. Symp. Proc. Vol. 449, p. 497 (1997).Google Scholar
9. Mireles, F. and Ulloa, S. E., Appl. Phys. Lett. 74, 248 (1999)Google Scholar
10. Wang, Y. J., Kaplan, R., Ng, H. K., Doverspike, K., Gaskill, D. K., Ikedo, T., Akasaki, I., and Amono, H., J. Appl. Phys. 79, 8007 (1996)Google Scholar
11. Moore, W. J., Freitas, J. A. Jr, Lee, S. K., Park, S. S., and Han, J. Y., Phys. Rev. B 65, 081201 (2002)Google Scholar
12. Jasinski, J., Liliental-Weber, Z., Huang, D., Reshchikov, M. A., Yun, F., Morkoç, H., Sone, C., Park, S. S., and Lee, K. Y., Mat. Res. Soc. Symp. Proc. 722, K3 (2002).Google Scholar
13. Reshchikov, M. A. and Korotkov, R. Y., Phys. Rev. B 64, 115205 (2001)Google Scholar
14. Reshchikov, M. A., Morkoç, H., Park, S. S., and Lee, K. Y., Appl. Phys. Lett. 78, 3041 (2001)Google Scholar
15. Reshchikov, M. A., Morkoç, H., Park, S. S., and Lee, K. Y., submitted to Phys. Rev. Lett. (2002).Google Scholar