Hostname: page-component-7479d7b7d-t6hkb Total loading time: 0 Render date: 2024-07-11T06:57:26.244Z Has data issue: false hasContentIssue false

Photoluminescence and Raman Spectroscopy Studies of H+ Ion Implanted SOI Structures Formed by Hydrogen Ion Slicing

Published online by Cambridge University Press:  21 March 2011

Vladimir P. Popov
Affiliation:
Institute of Semiconductor Physics, Novosibirsk, 630090, Russia
Ida E. Tyschenko
Affiliation:
Institute of Semiconductor Physics, Novosibirsk, 630090, Russia
Konstantin S. Zhuravlev
Affiliation:
Institute of Semiconductor Physics, Novosibirsk, 630090, Russia
Ivan I. Morosov
Affiliation:
Institute of Nuclear Physics, Novosibirsk, 630090, Russia
Get access

Abstract

H+ ion implanted SOI structures formed by hydrogen ion slicing have been investigated by Raman spectroscopy and photoluminescence (PL). After implantation the wafers have been heat-treated by either furnace annealing (FA) or rapid thermal annealing (RTA). It has been found that implantation of 3 × 1017 H+/cm2 results in the formation of the amorphous Si layer (a-Si) inside silicon film on insulator. Structural transformations in a-Si depended on the annealing conditions. FA led to crystallization of a-Si and to the formation of monocrystalline silicon films. RTA results in the formation of the layers containing a high density of Si nanocrystals. A comparison of the Raman measurements with the PL data allows to conclude that PL bands obtained near 420 and 500 nm are not associated with the radiative recombination in Si nanocrystals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).Google Scholar
2. Shimizu-Iwajama, T., Nakao, S., and Saitoh, K., J.Appl.Phys. 65, 1814 (1994).Google Scholar
3. Werwa, E., Seraphin, A. A., Chin, L. A., Zhou, Ch., and Kolenbrander, K. D., Appl. Phys. Lett. 64, 1821 (1994).Google Scholar
4. Morisaki, H., Ping, F. W., Ono, H., and Yazawa, K., J. Appl. Phys. 70, 1869 (1991).Google Scholar
5. Hayashi, S., Nagareda, T., Kanzawa, Y., and Yamamoto, K., Jpn. J. Appl. Phys., Part 1 32, 3840 (1993).Google Scholar
6. Hartstein, A., Tsang, J.C., Maria, D. J. Di, and Dong, D. W., Appl. Phys. Lett. 36, 836 (1980).Google Scholar
7. Tyschenko, I. E., Kachurin, G. A., Zhuravlev, K. S., Pazdnikov, N. A., Volodin, V. A., Gutakovsky, A. K., Gutakovsky, A. F. Leier, A. F., Frub, H., Leo, K., Buhme, T., Rebohle, L., Yankov, R. A., and Skorupa, W., Mater.Res.Soc.Proc. 438, 453 (1997).Google Scholar