Hostname: page-component-5c6d5d7d68-wp2c8 Total loading time: 0 Render date: 2024-08-21T12:11:50.236Z Has data issue: false hasContentIssue false

Photoluminescence and Photoacoüstic Spectroscopy of Si Single-and Multi-Step Ingot- and Wafer-Annealed GaAs Crystals

Published online by Cambridge University Press:  03 September 2012

O. Ka
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba 305, Japan
O. Oda
Affiliation:
Electronic Materials and Components Research Laboratories, Nippon Mining Co. Ltd, Niizo Minami, Saitama 335, Japan
S. Shigetomi
Affiliation:
Kurume Univ., Dep. of Physics, 1635 Mii-machi, Kurume 830, Japan
T. Ikari
Affiliation:
Miyazaki Univ., 1–1 Gakuenkibanadai, Miyazaki 889–21, Japan
Y. Makita
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba 305, Japan
A. Yamada
Affiliation:
Electrotechnical Laboratory, 1–1–4 Umezono, Tsukuba 305, Japan
Get access

Abstract

SI GaAs crystals submitted to single- or multi-step, ingot-or wafer-annealing are investigated using photoluminescence (PL) and photoacoustic spectroscopy (PA). The near-band-edge PL transitions are well resolved, with a neutral acceptor-bound exciton recombination displayed as a split doublet. The improvement induced by wafer-annealing is illustrated by the absence of additional defect-related transitions found after ingot-annealing. For the room temperature PA measurements, the intensity of a peak occuring at 1.39 eV is shown to lead to an estimation of the arsenic micro-defect density as evaluated by AB etching. The 1.39 eV PA band is also asserted to be the non-radiative recombination path of a 1.482 eV band found in the low-temperature PL spectra.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Mori, M., Kano, G., Inoue, T., Shimakura, H., Yamamoto, H., and Oda, O., Semi- Insulating III-V Materials, eds. Milnes, A. G. and Miner, C. J. (New York: Adam Hilger, 1990), p. 59 Google Scholar
2. Oyake, M., Yamamoto, H., Kano, G., Inoue, T., and Oda, O., in GaAs and Related Compounds, Inst- Phys. Conf. Ser. No 112, p. 311 (1991)Google Scholar
3. Ikari, T., Shigetomi, S., Nishimura, H., Yokoyama, H., Yayama, H., and Tomokiyo, A., Phys. Rev. B 37, 886 (1988)Google Scholar
4. White, A. M., Dean, P. J., Taylor, L. L., Clarke, R. C., Ashen, D. J., and Mullin, J. B., J. Phys. C, 5, 1727 (1972)Google Scholar
5. Yu, P. W., Look, D. C., Ford, W., J. Appl. Phys. 62, 2960 (1987);Google Scholar
Steiner, T., Zhang, Yu, Charbonneau, S., Villemaire, A., and Thewalt, M. L., Can. J. Phys. 67, 242 (1989)Google Scholar
6. Kunzel, H. and Ploog, K., Appl. Phys; Lett. 37, 416 (1980)Google Scholar
7. Ka, O., Oda, O., Shigetomi, S., Ikari, T., Makita, Y., and Yamada, A., to be published in the Proceedings of the 7th Confer enee on Semi-Insulating III-V Materials Ixtapa. Mexico. 1992 Google Scholar
8. Jackson, W. and Amer, N. M., J. Appl. Phys. 51, 3343 (1980)Google Scholar
9. Wasa, K., Tsubouchi, K., Mikoshiba, N., Jpn. J. Appl. Phys. 19, L653 (1980)Google Scholar
10. Ikari, T., Yokoyama, H., Maeda, K., and Futagami, K., Phys. Stat. Sol. (a) 121, K125 (1990)Google Scholar
11. Stirland, D. J., Augustus, P. D., Brozel, M. R., and Foulkes, E. J., in Semi-Insulating III-V Materials, edited by Look, P.C. and Blakemore, J.S. (Shiva Publishing Ltd. Nantwich, 1984). p. 91 Google Scholar
12. Yamamoto, H., Oda, J., Seiwa, M., Taniguchi, M., Nakata, H., and Ejima, M., J. Electrochem. Soc. 136, 3098 (1989)Google Scholar