Skip to main content Accessibility help
×
Home

Photoluminescence and Optical Characterization of a-SixN1-x:H based Multilayers Grown by PECVD

  • F. Giorgis (a1), F. Giuliani (a1), C. F. Pirri (a1), E. Tresso (a1), R. Galloni (a1), R. Rizzoli (a2), C. Summonte (a2), A. Desalvo (a3), F. Zignani (a3), P. Rava (a4) and F. Cacca Vale (a5)...

Abstract

High room temperature photoluminescence efficiency (PLE) was observed for the first time in a-SixN1-x:H based nanometric multilayers deposited by plasma enhanced chemical vapour deposition (PECVD). The structure consists of alternate stoichiometric a-Si3N4:H barrier layers (E04=5.0 eV) and well layers in which E04 is varied between 2.11 eV and 2.64 eV. The peak of PL spectra and the absorption coefficient edge exhibits a blue shift up to 0.5–0.6 eV by decreasing the well thickness from 30 Å down to 5–10 Å. A strong increase in the PLE of multilayers, with well thickness around 5–10 Å, with respect to the PLE of bulk material was obtained.

A p-i-n light emitting device (LED) with a multilayered structure as i-layer, having well layers with E04=2.64 eV and thickness 10 Å, is presented. The LED under forward bias shows an emission visible with the naked eye, with limited degradation after 8 hours of continuous operation.

Copyright

References

Hide All
1. Abeles, B. and Tiedje, T., Phys. Rev. Lett. 51, 2003 (1983).
2. Hirose, M., Miyazaki, S., J. of Non-Cryst. Solids 66, 327 (1984).
3. Kakalios, J., Fritzsche, J., Ibaraki, N., Ovshinsky, S., J. of Non-Cryst. Solids 66, 334 (1984).
4. Wronski, C.W., Persans, P.D., Abeles, B., Appl. Phys. Lett. 49, 569 (1986).
5. Miyazaki, S., Ihara, Y., Hirose, M., Phys. Rev. Lett. 59, 125 (1987).
6. Jiang, Y.L., Hwang, H.L., Jpn. J. Appl. Phys. 27, L2434 (1988)‥
7. Hattori, K., Mori, T., Okamoto, H., Hamakawa, Y., Phys. Rev. Lett. 60, 825 (1988).
8. Hattori, K., Okamoto, H., Hamakawa, Y., J. of Non-Cryst. Solids 114, 687 (1989).
9. Bernhard, N., Dittrich, H., Bauer, G.H., J. Non-Cryst. Solids 137/138, 1103 (1991).
10. Bernhard, N., Bauer, G.H., Phys. Rev. B 52, 8829 (1995).
11. Miyazaki, S., Hirose, M., in Amorphous and Microcrystalline Semiconductor Devices: Optoelectronic Devices, edited by Kanicki, J. (Artech House, Boston, 1991) Vol. 1, p. 167
12. Kruangam, D., Deguchi, M., Endo, T., Okamoto, H. and Hamakawa, Y., in Amorphous Silicon Semiconductors-Pure and Hvdrogenated, edited by Madan, A., Thompson, M., Adler, D., Hamakawa, Y. (Mat. Res. Soc. Symp. Proc. 95, Pittsburgh, PA, 1987) p. 609.
13. Tsukude, M., Akamatsu, S., Miyazaki, S., Hirose, M., Jpn. J. Appl. Phys., 26, L111 (1987).
14. Madan, A., Rava, P., Schropp, R.E.I, vonRoedern, B., Appl. Surf. Sci. 70/71, 216 (1993).
15. Esaki, L., Tsu, R., IBM J. Res. Dev. 14, 61 (1970).
16. Raikh, M.E., Baranovskii, S.D., Shklovskii, B.I., Phys. Rev. B 41, 7701 (1990).
17. Tsu, R., Tetrahedrallv-Bonded Amorphous Semiconductors, edited by Adler, D. and Fritzsche, H. (Plenum Press, New York, 1985), 433.
18. Asano, A., Ichimura, T., Ohsawa, M., Uchida, Y., J. Non-Cryst. Solids 97/98, 971 (1987).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed