Hostname: page-component-76fb5796d-vvkck Total loading time: 0 Render date: 2024-04-27T04:55:57.547Z Has data issue: false hasContentIssue false

Photoluminescence and Light-Induced ESR in a-Si:H Studied with Subgap Excitation

Published online by Cambridge University Press:  01 January 1993

Rosari Saleh
Affiliation:
Fachbereich Physik und Wissenschaftliches Zentrum fiir Materialwissenschaften, Universitāt Marburg, Renthof 5, D-3550 Marburg,Germany.
Isabell Ulber
Affiliation:
Fachbereich Physik und Wissenschaftliches Zentrum fiir Materialwissenschaften, Universitāt Marburg, Renthof 5, D-3550 Marburg,Germany.
Walther Fuhs
Affiliation:
Fachbereich Physik und Wissenschaftliches Zentrum fiir Materialwissenschaften, Universitāt Marburg, Renthof 5, D-3550 Marburg,Germany.
Get access

Abstract

We have studied the influence of the photon energy of the exciting light on the distribution of the carriers in the gap of a-Si:H by light-induced electron spin resonance (LESR) and photoluminescence (PL). In the LESR spectra the number of spins in the broad line (h) is larger than in the narrow line (e or e+db) by a factor of 2-3. For excitation in the bulk of the sample this asymmetry does not depend on the light intensity and photon energy, which suggests that it is not possible to relate the asymmetry to a specific defect structure. LESR and PL show that both bandtails can be populated by absorption of IR light (1060 nm) by optical transitions from occupied and into empty defect states. The recombination kinetics suggest that these absorption processes occur as a two-step process at the same defect

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

[1] Street, R. A., Advances in Physics 30, 596 (1981)Google Scholar
[2] Branz, H. M., Phys. Rev. B 41, 7887 (1990).Google Scholar
[3] Ristein, J., Hautala, J., and Taylor, P. C., Phys. Rev. B40, 88 (1989).Google Scholar
[4] Street, R. A. and Biegelsen, D. K., Solid State Commun. 33, 1159 (1980).Google Scholar
[5] Stutzmann, M., Biegelsen, D. K. and Street, R. A., Phys. Rev. B35, 5666 (1987).Google Scholar
[6] Carius, R. and Fuhs, W., J. Non Cryst. Solids 77&78, 659 (1985).Google Scholar
[7] Dersch, H., Stuke, J., Beichler, J., phys. stat. sol (b) 107, 307 (1981).Google Scholar
[8] Bort, M., Fuhs, W., Liedtke, S., Stachowitz, R., Carius, R., Phil. Mag. Lett. 64, 227 (1991).Google Scholar
[9] Chen, W., Feldman, B., Bajaj, J., Tong, F., Wong, G.K., Solid State Commun. 38, 357 (1981)Google Scholar
[10] Shah, J., Pinczuk, A., Alexander, F. B., Bagley, B. G., Solid State Commun. 42, 717 (1982)Google Scholar
[11] Wilson, B. A., Kerwin, T. P., Phys. Rev. B25, 8, 1982 Google Scholar