Skip to main content Accessibility help
×
Home

Photo-induced Large Area Growth Of Dielectrics With Excimer Lamps

  • Ian W. Boyd (a1) and Jun-Ying Zhang (a1)

Abstract

In this paper, UV-induced large area growth of high dielectric constant (Ta2O5, TiO2and PZT) and low dielectric constant (polyimide and porous silica) thin films by photo-CVD and sol-gel processing using excimer lamps, as well as the effect of low temperature LW annealing, are discussed. Ellipsometry, Fourier transform infrared spectroscopy (FTIR), X-ray photoelectron spectroscopy (XPS), UV spectrophotometry, atomic force microscope (AFM), capacitance-voltage (C-V) and current-voltage (I-V) measurements have been employed to characterize oxide films grown and indicate them to be high quality layers. Leakage current densities as low as 9.0×10−8 Acm−2 and 1.95×10−7 Acm−2 at 0.5 MV/cm have been obtained for the as-grown Ta2O5 films formed by photo-induced sol-gel processing and photo-CVD. respectively - several orders of magnitude lower than for any other as-grown films prepared by any other technique. A subsequent low temperature (400°C) UV annealing step improves these to 2.0×10−9 Acm−2 and 6.4× 10−9 Acm−2, respectively. These values are essentially identical to those only previously formed for films annealed at temperatures between 600 and 1000°C. PZT thin films have also been deposited at low temperatures by photo-assisted decomposition of a PZT metal-organic sol-gel polymer using the 172 nm excimer lamp. Very low leakage current densities (10−7 A/cm2) can be achieved, which compared with layers grown by conventional thermal processing. Photo-induced deposition of low dielectric constant organic polymers for interlayer dielectrics has highlighted a significant role of photo effects on the curing of polyamic acid films. I-V measurements showed the leakage current density of the irradiated polymer films was over an order of magnitude smaller than has been obtained in the films prepared by thermal processing. Compared with conventional furnace processing, the photo-induced curing of the polyimide provided both reduced processing time and temperature, A new technique of low temperature photo-induced sol-gel process for the growth of low dielectric constant porous silicon dioxide thin films from TEOS sol-gel solutions with a 172 nm excimer lamp has also been successfully demonstrated. The dielectric constant values as low as 1.7 can be achieved at room temperature. The applications investigated so far clearly demonstrate that low cost high power excimer lamp systems can provide an interesting alternative to conventional UV lamps and excimer lasers for industrial large-scale low temperature materials processing.

Copyright

References

Hide All
1 Muller, D.A., Sorsch, T., Moccio, S., Baumann, F.H., Evans-Lutterodt, K. and Timp, G., Nature, 399 (1999) 758.
2 Semiconductor industry Association The National Technology Roadmap for Semicond. 71–78 (Sematech Austin, 1997)
3 Schulz, M., Nature, 399 (1999) 729.
4 Billman, C.A., Tan, P.H., Hubbard, K.J., and Schlom, D.G., Mat. Res. Soc. Symp. Proc. 567 (1999) 409.
5 Jia, Q.X., Wu, X.D., Foltyn, S.R., and Tiwari, P., Appn. Phys. Lett. 66(1995) 2197.
6 Singh, R., Alamgir, S., and Sharangpani, R., Appl. Phys. Lett. 67 (1995) 3939.
7 Tanimoto, S., Matsui, M., Kamisako, K., Kuroiwa, K., and Tarui, Y., J. Electrochem. Soc. 139(1992) 320.
8 Nishimura, Y., Tokunaga, K. and Tsuji, M., Thin Solid Films 226 (1993) 144.
9 Kwon, KW, Kang, CS, Park, SO, Kang, HK, Ahn, ST, IEEE Trans Electron Devices 43 (1996) 919.
10 Zhang, J.-Y., Lim, B., Dusastre, V., and Boyd, I.W., Appl. Phys. Lett. 73 (1998) 2299.
11 Shinriki, H., Kisu, T., Nishioka, Y., Kawamoto, Y., and Mukai, K., IEEE Trans. Electron Devices 37 (1990) 1939.
12 Cava, R.F., Peck, W.F. Jr and Krajewski, J.J., Nature, 377 (1995) 215.
13 Cappellani, A., Keddie, J.L., Barradas, N.P. and Jackson, S.M., Solid-State Electronics, 43 (1999) 1095.
14 Cava, R.J. and Krajewski, J.J., J. Appl. Phys. 83 (1998) 1613.
15 Kamiyama, S., Suzuki, It., Watanabe, H., Sakai, A., Kimura, H., and Mizuki, J.. J. Electrochem Soc., 141 (1994) 1246.
16 Pignolet, A., Rao, G. M., Krupanidhi, S.B., Thin Solid Films, 258 (1995) 230.
17 Sun, S.C. and Chen, T.F.. IEEE Electron Device letters 17 (1996) 355.
18 Park, S.W., Baek, Y.K., Lee, J.Y., Park, C.O. and Im, H.B., J. Electronic. Mater. 21 (1992) 635.
19 Zaima, S., Furuta, T., Koide, Y., and Yasuda, Y., J. Electrochem. Soc. 137 (1992) 2876.
20 Kamiyama, S., Lesaicherre, P.. Suzuki, H., Nishiyama, I. and Ishitani, A., J. Electrochem. Soc. 140 (1993) 1617.
21 Autran, J.L., Paillet, P., Leray, J.L., and Devine, R.A.B., Sensors and Actuators A 51 (1995) 5.
22 Zhang, J.-Y., Dusastre, V., Williams, D.E. and Boyd, I.W., J. Phys, D: Appl. Phys. 32 (1999) L1.
23 Shinriki, H. and Nakata, M., IEEE Trans. Electron. Dev. 38 (1991) 455.
24 Zhang, J.-Y., Fang, Q., and Boyd, I.W., Appl. Surf. Sci. 138–139 (1999) 320.
25 Devine, R.A.B., Appl. Phys. Lett. 68 (1996) 1924.
26 Zhang, J.-Y.. Lim, B., and Boyd, I.W., Thin Solid Films 336 (1998) 340.
27 Isobe, C. and Saitoh, M., Appl. Phys. Lett. 56 (1990) 907.
28 Zhang, J.-Y. and Boyd, I.W., J. of Mater. Sci. Lett. 17 (1998) 1507.
29 Murawala, P.A., Sawai, M., Tatsuta, T., Tsuji, O., Fujita, S., and Fujita, S., Jpn. J. Appl. Phys. 32 (1993) 368.
30 Sankur, H.O. and Gunning, W., Appl. Opt. 28 (1989) 2806.
31 Kim, I.L., Kim, J.S., Kwon, O.S., Ahn, S.T., Chun, J.S. and Lee, W.J., J. Electron. Mater. 24 (1995) 1435.
32 Laviale, D., Oberlin, J.C., and Devine, R.A.B., Appl. Phys. Lett. 65 (1994) 2021.
33 Matsui, M., Oka, S., Yamagishi, K., Kuroiwa, K., and Tarui, Y., Jpn. J. Appl. Phys. 27 (1988) 506.
34 Oshio, S.. Yamamoto, M., Kuwata, J., and Matsuoka, T., J. Appl. Phys. 71 (1992) 3471.
35 Aoyama, T., Yamazaki, S., and Imai, K., J. Electrochem. Soc. 145 (1998) 2961.
36 Eliasson, B. and Kogelschatz, U., Appl. Phys. B 46 (1988) 299.
37 Eliasson, B. and Kogelschatz, U., Proc. 40 Ann. Gas. Electron. Conf. (GEC 87), Atlanta 1987, p. 174.
38 Gellert, B., Eliasson, B. and Kogelschatz, U., Proc. 5 Int. Symp. on the Science & Technology of Light Sources (LS:5), York 1989, p.155 and 181.
39 Kogelschatz, U., Pure & Appl. Chem. 62 (1990) 1667.
40 Kogelschatz, U., Appl. Surf. Sci. 54 (1992) 410.
41 Zhang, J.-Y. and Boyd, I.W., J. Appl. Phys. 80 (1996) 633.
42 Zhang, J.-Y. and Boyd, I.W., J. Appl. Phys. 84 (1998) 1174.
43 Boyd, I.W. and Zhang, J.-Y., Nucl. Instrum. Meth. Phys. Res. B 121 (1997) 349.
44 Bergonzo, P. and Boyd, I.W.. J. Appl. Phys. 76 (7) (1994) 4372.
45 Bergonzo, P. and Boyd, I.W.. Appl. Phys. Lett. 63 (1993) 1757.
46 Zhang, J.-Y., Bie, L.-J., and Boyd, I.W., Jpn. J. Appl. Phys. 37 (1998) L27.
47 Zhang, J.-Y., Bie, B.-J., Dusastre, V. and Boyd, I.W., Thin Solid Films 318 (1998) 252.
48 Esrom, H., Denmy, J., and Kogelschatz, U., Chemtronics 4 (1989) 202.
49 Esrom, H. and Kogelschatz, U., Appl. Surf. Sci. 46 (1990) 158.
50 Esrom, H. and Kogelschatz, U., Appl. Surf. Sci. 54 (1992) 440.
51 Zhang, J.-Y., Fang, Qi, King, S.L. and Boyd, Ian W., Appl. Surf. Sci. 109/10 (1997) 487.
52 Zhang, J.-Y., Esrom, H., and Boyd, I.W., Appl. Surf. Sci. 96–98 (1996) 399.
53 Zhang, J.-Y. and Boyd, I.W., J. Mat. Sci. Lett. 16 (1997) 996.
54 Zhang, J.-Y. and Boyd, I.W., Appl. Phys. A 65 (1997) 379.
55 Zhang, J.-Y. and Boyd, I.W., Thin Solid Films, 318 (1998) 234.
56 Zhang, J.-Y. and Boyd, I.W., Electronics Letters, 32 (1996) 2097.
57 Cracium, V., Hutten, B., Williams, D.E. and Boyd, I.W., Electronics Letters 34 (1998) 71
58 Zhang, J.-Y. and Boyd, I.W., Appl. Phys. Lett. 71 (1997) 2964.
59 Craciun, V.. Zhang, J-Y. and Boyd, I.W., NATO Fund. Aspects of Ultrathin Dielectrics on Si-based Dev. 1997, pp461.
60 Esrom, H. and Kogelschatz, U., Thin solid films, 218 (1992) 231.
61 Zhang, J.-Y., Thesis, Karlsruhe University, Germany, 1993.
62 Esrom, H., Zhang, J.-Y., and Kogelschatz, U., Mat. Res. Symp. Proc. 236 (1992) 39.
63 Zhang, J.-Y., Esrom, H., Kogelschatz, U. and Emig, G., Appl. Surf. Sci. 69 (1993) 299.
64 Zhang, J.-Y., Esrom, H., Kogelschatz, U., and Emig, G., J. of Adhesion Sci. and Technol. 8 (1994) 1179.
65 Zhang, J.-Y., Esrom, H., and Boyd, I.W., Surface and Interface Analysis 24 (1996) 718.
66 Craciun, V., Boyd, I.W., Craciun, D., Andreazza, P. and Perriere, J., J. Appl. Phys. 85 (1999) 8841.
67 Craciun, V., Craciun, D., Andreazza, P., Perriere, J. and Boyd, I.W., Appl. Surf. Sci. 139 (1999) 587.
68 Kogelschatz, U., NATO Advanced Research Workshop on Non-thermal Plasma Teclmiques for Pollution Control, Cambridge University, UK, September 21-25, 1992.
69 Nohr, R.S. and MacDonald, LG., Kogelschatz, U., Mark, G., Schuchmann, H.-P. and Sonntag, C. von, J. Pholochem. Photobiol. A: Chem. 79 (1994) 141.
70 Zhang, J.-Y. and Boyd, I.W., Mat. Res. Symp. Proc. 471 (1997) 53.
71 Urakabe, T., Ilarada, S., Saikatsu, T. and Karino, M., Sci, and Tech. of light Sources (1S7) Kyoto, 1995, Eds: Italani, R. and Kamiya, S., pp159.
72 Bergonzo, P., Kogelschatz, U., and Boyd, I.W., Appl. Surf. Sci. 69 (1993) 393.
73 Bergonzo, P., Kogelschatz, U., and Boyd, I.W., SPIE, Vol 2045 (1994) 174.
74 Bergonzo, P. and Boyd, I.W., Electronics Letters, 30 (1994) 606.
75 Bergonzo, P. and Boyd, I.W., Microelectronic Engineering 25 (1994) 345.
76 Eftekhari, G., J. Electrochem. Soc. 140 (1993) 787.
77 Gellert, B., Kogelschatz, U., Appl. Phys. B 52 (1991) 14.
78 Stevens, B. and Hutton, E., Nature, 186 (1960) 1045.
79 Malinin, A.N., Shuaibov, A.K. and Shevera, V.S., J. Appl. Spectrosc., 32 (1980) 313.
80 Volkova, G.A., Kirillova, N.N., Pavlovskaya, E.N. and Yakovleva, A.V., J. Appl. Spectrosc. 41 (1984)1194.
81 Eliasson, B. and Gellert, B., J. Appl. Phys. 68 (1990) 2026.
82 Eliasson, B., Hirth, M. and Kogelschatz, U., J. Phys D: Appl. Phys. 20 (1987) 1421.
83 Neiger, M., Schorpp, V. and Stockwald, K., Proc. 41. Ann. Gaseous Electron. Conf. (GEC 88), Minneapolis p.74, 1988.
84 Boyd, I.W. and Zhang, J.-Y., Mat. Res. Symp. Proc. 470 (1997) 343.
85 Ametepe, J.D., Diggs, J., Manos, D.M. and Kelley, M.J., J. Appl. Phys. 85 (1999) 7505.
86 Patel, P., Boyd, I.W., Appl. Surf. Sci. 46 (1990) 352.
87 Kessler, F. and Bauer, G.H., Appl. Surf. Sci. 54 (1992) 430.
88 Kessler, F., Mohring, H.D., Bauer, G.H., Proc. of the 9th Conf. on Plasma Chem. 3 (1989) 1383.
89 Manfredotti, C., Fizotti, F.. Boero, M., Piatti, G., Appl. Surf. Sci. 69 (1993) 127.
90 Bollanti, B., Clementi, G., Lazzaro, P.D., Flora, F., Giordano, G., Letardi, T., Muzzi, F., Schina, G. and Zheng, C.E., IEEE Transactions on Plasma Science 27 (1999) 211.
91 Shuaibov, A.K., Shimon, L.L. and Shevera, I.V., Insir. and Experimental Tech. 41 (1998) 427.
92 Barnes, P.N. and Kushner, M.J., J. Appl. Phys. 80 (1996) 5593.
93 Kawanaka, J., Ogata, A., Kubodera, S., Sasaki, W. and Kurosawa, K., Appl. Phys. B-Lasers and Optics 65 (1997) 609.
94 Kitamura, M., Mitsuka, K. and Sato, f., Appl. Surf. Sci. 80 (1994) 507.
95 Nakamura, T., Kannari, F. and Obara, M., Appl. Phys. Lett. 57 (1990) 2057.
96 El-Habachi, A. and Schoenbach, K.H., Appl. Phys. Lett. 72 (1998) 1.
97 Kogelschatz, U., Eliasson, B. and Egli, W.. J. Phys. IV France 7 (1997) C447.
98 Rhodes, Ch. K. “Excimer Lasers”, Vol. 30 of Topics in Applied Physics, Springer-Verlag, Berlin, 1984.
99 Zhang, J.-Y., Esrom, H., and Boyd, I.W., Appl. Surf. Sci. 109/110 (1997) 482.
100 Zhang, J.-Y., Esrom, H., and Boyd, I.W., Appl. Surf. Sci. 138–139 (1999) 315.
101 Boyd, I.W. and Zhang, J.-Y., Advanced Laser Technologies (ALT99), Potenza-Lecce, Italy, Sept 20-24, 1999.
102 Ohishi, T., Maekawa, S. & Katoh, A., J. Non-Cryst. Solids 147&148 (1992) 493.
103 Lo, G.Q., Kwong, D.L., and Lee, S., Appl. Phys. Lett. 60 (1992) 3286.
104 An, C.H. and Sugimoto, K., J. Electrochem Soc. 139 (1992) 1956.
105 Zhang, J.-Y., Dusastre, V., Williams, D.E. and Boyd, I.W., J. Phys. D: Appl. Phys. 32 (1999) L1.
106 Kaliwoh, N., Zhang, J.-Y. and Boyd, I.W., Surface and Coating Technology 125 (2000) 424.
107 Zhang, J.-Y. and Boyd, I.W., Jpu. J. Appl. Phys. 38 (1999) L393.
108 Singer, P., Semiconductor International, October 1994, p. 34.
109 Murarka, S.P., Solid State Technology 39 (1996) 8390.
110 Zhang, J.-Y. and Boyd, I.W., Optical Materials 9 (1998) 251.
111 Pryde, C.A., J. Polym. Sci.: Part A: Polym. Chem., 1989, 27, pp, 711724
112 Zhang, J.-Y. and Boyd, I.W., E-MRS 99 Spring Meeting (to be published Appl. Surf. Sci. 2000).

Keywords

Related content

Powered by UNSILO

Photo-induced Large Area Growth Of Dielectrics With Excimer Lamps

  • Ian W. Boyd (a1) and Jun-Ying Zhang (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.