Hostname: page-component-848d4c4894-sjtt6 Total loading time: 0 Render date: 2024-07-05T18:36:03.728Z Has data issue: false hasContentIssue false

Photoemission Study of the Si, Ge Epitaxial Growth Process Using Surfactants

Published online by Cambridge University Press:  25 February 2011

Xiaoyu Yang
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA94309
Renyu Cao
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA94309
Jeff Terry
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA94309
Piero Pianetia
Affiliation:
Stanford Synchrotron Radiation Laboratory, Stanford University, Stanford, CA94309
Get access

Abstract

Heteroepitaxial growth of Ge on Si(100) and Si on Ge(100) surfaces with Sb as a surfactant has been investigated by in situ high resolution photoemission and low energy electron diffraction (LEED). Our results show that an ordered monolayer of Sb atoms saturate the surface dangling bonds and consequently lower the surface free energy. Deposition of Ge or Si on the Sb/Si(100) or Sb/Ge(100) surfaces either at room temperature, followed by mild annealing or deposition at elevated temperature, result in an epitaxial layer of Ge or Si on the substrate, respectively. We provide clear experimental evidence that the deposited Ge or Si atoms changes position with the surface Sb atoms in this process. Ge or Si atoms occupy the epitaxial sites previously occupied by the Sb atoms. The Sb atoms in turn segregate to the surface and form a new ordered layer. The Bi-assisted growth process is also discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCE

1. Bean, John C., Science 230, 127 (1985)Google Scholar
2. People, R., IEEE Journal of Quantum Electronics, OE–22. 1696(1986)Google Scholar
3. Copel, M., Reuter, M. C., Kaxiras, Efthimios, and Tromp, R. M., Phys. Rev. Lett. 6, 632 (1989)Google Scholar
4. LeGoues, F. K., Copel, M., and Tromp, R., Phys. Rev. B 42, 11690 (1989)CrossRefGoogle Scholar
5. Higuchi, Shinji and Nakanishi, Yasuo, Surf. Sci. 254, L465 (1991)Google Scholar
6. Bringans, R. D., Olmstead, M. A., Uhrberg, R. I. G., and Bachrach, R. Z., Phys. Rev.B 36, 9569 (1987)CrossRefGoogle Scholar
7. Rich, D. H., Miller, T., Franklin, G. E., and Chiang, T.-C., Phys. Rev. B 39, 1438 (1989)Google Scholar
8. Richter, M., Woicik, J. C., Nogami, J., Pianetta, P., Miyano, K. E., Baski, A. A., Kendelewicz, T., Bouldin, C. E., Spicer, W. E., Quate, C. F., and Lindau, I., Phys. Rev. Lett. 65, 3417 (1990)CrossRefGoogle Scholar
9. Yang, X., Cao, R., Terry, J. and Pianetta, P., J. Vac. Sci. Technol. B, Jul/Aug(1992)Google Scholar