Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-29T12:32:25.052Z Has data issue: false hasContentIssue false

Photoelectron Emission Mechanism From Hydrogen Terminated Nano-Crystalline Diamond

Published online by Cambridge University Press:  01 February 2011

Daisuke Takeuchi
Affiliation:
d.takeuchi@aist.go.jp, National Institute of Advanced Industrial Science and Technology (AIST), Nanotechnology Research Institute, AIST TC2-13,, 1-1-1 Umezono, Tsukuba, 305-8568, Japan, +81-29-861-5634, +81-29-861-2773
Kazuhiko Saeki
Affiliation:
saekik01@pref.tochigi.jp, Industiral Technology Center of Tochigi Prefecture, Utunomiya, 321-3224, Japan
Christoph Erwin Nebel
Affiliation:
christoph.nebel@aist.go.jp, AIST, Diamond Research Center, Tsukuba, 305-8568, Japan
Satoshi Yamasaki
Affiliation:
s-yamasaki@aist.go.jp, National Institute of Advanced Industrial Science and Technology (AIST), Nanotechnology Research Institute (NRI), AIST TC2-13,, 1-1-1 Umezono, Tsukuba, 305-8568, Japan
Oliver Aneurin Williams
Affiliation:
oliver.williams@uhasselt.be, University of Hasselt, Institute for Materials Research (IMO), Diepenbeek, B-3590, Belgium
Get access

Abstract

We investigated the electron affinity on hydrogen-terminated nano- (NCD) and ultranano-crystalline diamond (UNCD) films to reveal influences of defects, sp2 and grain boundaries on photoemission properties. To compare properties, single crystalline IIa diamond, optical grade poly-, nano-, ultranano-crystalline diamond films, a diamond-like carbon film, a highly oriented pyrolytic graphite have been characterized. All hydrogen terminated SCD, PCD and NCD samples show continuous sub-band yield, arising at about 4.4 eV, regardless of their crystal and/or grain sizes, while UNCD, DLC, and HOPG do not show the specific photoemission in the regime hν < 6 eV. Note that the UNCD film grown with some amount of hydrogen in the gas phase (UNCD-H) shows a comparable yield spectrum as hydrogen-terminated SCD. According to the normalized spectra, obviously, the electron emission mechanism on hydrogen-terminated NCD films is the same as that of SCD with a NEA of -1.1 eV. The sub-band yield from NCD is even larger than that of SCD, which is attributed to surface enlargement.

Type
Research Article
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Gruen, D. M., Annu. Rev. Mater. Sci. 29, 211 (1999).Google Scholar
2. Williams, O., Curat, S., Gerbe, J. E., Gruen, D. M., Jackman, R. B., Appl. Phys. Lett. 85, 1680 (2004).Google Scholar
3. Zapol, P., Sternberg, M., Curtiss, L. A., Frauenheim, T., Gruen, D. M., Phys. Rev., B 65, 045403, (2002).Google Scholar
4. Himpsel, F. J., Knapp, J. A., van Vechten, J. A., Eastman, D. E., Phys. Rev. B 20, 624 (1979).10.1103/PhysRevB.20.624Google Scholar
5. Bandis, C., Pate, B. B., Phys. Rev. Lett. 74, 777 (1995).Google Scholar
6. Cui, J. B., Ristein, J., Ley, L., Phys. Rev. Lett. 81, 429 (1998).10.1103/PhysRevLett.81.429Google Scholar
7. Vlasov, I. I., Ralchenko, V. G., Goovaerts, E., Saveliev, A. V., Kanzyuba, M. V., phys. stat. sol. (a) 203, 3028 (2006).Google Scholar
8. Xiao, X., Auciello, O., Cui, H., Lowndes, D. H., Merkulov, V. L., Carlisle, J., Diamond Relat. Mater. 15, 244 (2006).Google Scholar
9. Krauss, A. R., Auciello, O., Ding, M. Q., Gruen, D. M., Huang, Y., Zhirnov, V. V., Givargizov, E. I., Breskin, A., Chechen, R., Shefer, E. S., Konov, V., Pimenov, S., Karabutov, A., Rakhimov, A., Suetin, N., J. Appl. Phys. 89, 2958 (2001).10.1063/1.1320009Google Scholar
10. Michaelson, Sh., Hoffman, A., Diamond Relat. Mater. 14, 470 (2005).Google Scholar
11. Takeuchi, D., Kato, H., Ri, G. S., Yamada, T., Vinod, P. R., Hwang, D., Nebel, C. E., Okushi, H., Yamasaki, S., Appl. Phys. Lett. 86, 152103 (2005).Google Scholar
12. Sque, S. J., Jones, R., Briddon, P. R., Phys. Rev. B 73, 85313 (2006).Google Scholar
13. Daenen, M., Williams, O. A., D'Haen, J., Haenen, K., Nesladek, M., phys. stat. sol. (a), 203, 3005 (2006).Google Scholar
14. Lombardi, G., Hassouni, K., Benedic, F., Mohasseb, F., Röpcke, J., Gicquel, A., J. Appl. Phys. 96, 6739 (2004).Google Scholar
15. Jiao, S., Sumant, A., Kirk, M. A., Gruen, D. M., Krauss, A. R., Auciello, O., J. Appl. Phys. 90, 118 (2001).Google Scholar
16. Okushi, H., Diamond Relat. Mater. 10, 281 (2001).10.1016/S0925-9635(00)00399-XGoogle Scholar
17. Schäfer, J., Ristein, J., Ley, L., Ibach, H., Rev. Sci. Instrum. 64, 653 (1993).Google Scholar
18. Takeuchi, D., Nebel, C. E., Yamasaki, S., phys. stat. sol. (a) 203, 3100 (2006).Google Scholar
19. Takeuchi, D., Ri, S.-G., Kato, H., Nebel, C. E., Yamasaki, S., Diamond Relat. Mater. 15, 698 (2006).Google Scholar
20. Takeuchi, D., Riedel, M., Ristein, J., Ley, L., Phys. Rev. B 68, 041304(R) (2003).Google Scholar
21. Achatz, P., Garrido, J. A., Stutzmann, M., Williams, O. A., Gruen, D. M., Kromka, A., Steinmülle, D., Appl. Phys. Lett. 88, 101908 (2006).Google Scholar
22. CRC Handbook of Chemistry and Physics, 12–124, D. R. Lide ed. 78th Edition 19971998.Google Scholar
23. Sakai, T., Ono, T., Sakuma, N., Yoshida, H., Suzuki, M.: Proc. of ICNDST-10, Tsukuba, Japan, 2005.Google Scholar