Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-07T11:54:37.306Z Has data issue: false hasContentIssue false

Photocarrier Transport and Recombination in Amorphous Silicon

Published online by Cambridge University Press:  01 January 1993

C.R. Wronski
Affiliation:
Electronic Materials Processing Research Laboratory, The Pennsylvania State University, University Park, PA 16802
R.M. Dawson
Affiliation:
Electronic Materials Processing Research Laboratory, The Pennsylvania State University, University Park, PA 16802
M. Gunes
Affiliation:
Electronic Materials Processing Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Y.M. Li
Affiliation:
Electronic Materials Processing Research Laboratory, The Pennsylvania State University, University Park, PA 16802
R.W. Collins
Affiliation:
Electronic Materials Processing Research Laboratory, The Pennsylvania State University, University Park, PA 16802
Get access

Abstract

The effect of microstructure in undoped a-Si:H films on carrier transport, recombination, densities of midgap states and solar cell characteristics has been investigated. Extended state mobilities of electrons were obtained from photo and dark conductivity measurements between 40° C and 190° C and the gap states characterized using Dual Beam Photoconductivity. In these films the estimated room temperature electron mobilities increase from about 1 to 30 cm2/V sec as the dihydride concentrations and void volume fractions decrease. It is found that the carrier mobility-lifetime products are not solely determined by the dangling bond states. The effects of changes in the mobilities and midgap states on p-i-n homojunction solar cell characteristics are presented and discussed.

Type
Research Article
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Xu, X., Yang, J., Guha, S., Appl. Phys. Lett. 62, 1399 (1993).Google Scholar
2. Wronski, C.R., 21st IEEE Photovoltaic Specialists Conf., Kissimee, Florida (IEEE, N.Y, 1990), P. 1487.Google Scholar
3. Matsude, A., Technical Digest of Fifth "Sunshine" Workshop on Solar Cells, Tokyo, December, 1992, p.91.Google Scholar
4. Mahan, A.H. and Vanacek, M., Amorphous Silicon Materials and Solar Cells, AIP Conf. Proc. 234, Denver, CO, 1991, p. 195.Google Scholar
5. Collins, R.W., "Ellipsometric study of a-Si:H Nucleation, Growth, and Interfaces," in Amorphous Silicon and Related Materials, ed. Fritzsche, H. (World Scientific, New York, 1989), p. 1003.Google Scholar
6. Dawson, R.M., Nag, S., Gunes, M., Wronski, C.R., Benett, M., and Li, Y.M., Mat. Res. Soc. Symp. Proc. 258, 747 (1992).Google Scholar
7. Weiser, G. and Mell, H., J. of Non-Cryst. Solids 114, 298 (1989).Google Scholar
8. Gunes, M. and Wronski, C.R., Appl. Phys. Lett. 61, 678 (1992).Google Scholar
9. LeComber, P.G., Madan, A. and Spear, W.E, J. of Non-Cryst. Solids 11, 219 (1972).Google Scholar
10. Scott, B.A., Reimer, J.A., Plecenik, R.M., Simonyi, E.E. and Reuter, W., Appl. Phys. Lett. 40, 973 (1982).Google Scholar
11. Donnadieu, A., Yous, B., Berger, J.M., Ferraton, J.P. and Robin, J., J. de Physique C4, C4-655 (1982).Google Scholar
12. Pruppers, M.J.M., Maessen, K.M.H., Habraken, F.H.B.M., Bezemer, J. and Van Der Weg, W.F., Mat. Res. Symp. Proc. 192, 133 (1990).Google Scholar
13. Mahan, A.H., Williamson, D.L., Nelson, B.P., and Crandall, R.S., Phys. Rev. B 40, 12024 (1989).Google Scholar
14. Carlson, D.E. and Wronski, C.R., in Amorphous Semiconductors, ed. Brodsky, M.H., (Springer-Verlag, New York, 1985) p. 287.Google Scholar
15. Smith, Z E., Chu, V., Shepard, K., Aljishi, S., Slobodin, D., Kolodzy, J., Wagner, S., and chu, T.L., Appl. Phys. Lett. 50, 1521 (1987).Google Scholar
16. McMahon, J. and Crandall, R.S., Phys. Rev. B 39, 1766 (1989).Google Scholar
17. Dawson, R.M., Fortmann, C.M.. Gunes, M. and Wronski, C.R. (To be published).Google Scholar
18. Bube, R.H., Photoconductivity of Solids, (John Wiley & Sons, New York, 1970).Google Scholar
19. Haushildt, D., Fuhs, W. and Mell, H., Phys. Stat. Sol. (b) 111, 171 (1982); Beyer, W. and Overhof, H., Solid State Comm. 31, 1 (1979).Google Scholar
20. Teidje, T., Semiconductors and Semimetals, 21C, ed. Pankove, J.I., (Academic Press, New York, 1984), p.207.Google Scholar
21. McElheny, P. J., Arch, J.R., Lin, H.S. and Fonash, S.J., J. Appl. Phys. 64, 1254 (1988).Google Scholar
22. Silver, M. and Cannella, V., in Tetrahedrally-Bonded Amorphous Semiconductors, eds. Adler, D. and Fritzsche, H. (Plenum Press, New York, 1985) p. 389.Google Scholar
23. Fischer, D. and Fortmann, C.M., Appl. Phys. Lett, (in press, 1993).Google Scholar
24. McElheny, P.J., Nag, S., Fonash, S.J., Wronski, C.R., Bennett, M. and Arya, R., 21stIEEE Photovoltaic Specialists Conference, Kissimee, Florida (IEEE, N.Y., 1990).Google Scholar
25. Han, D., Schiff, E.A, and Silver, M. (Phys. Rev. B, in press, 1993).Google Scholar