Skip to main content Accessibility help

Photoactivated Metal-Oxide Gas Sensing Nanomesh by Using Nanosphere Lithography

  • Yu-Hsuan Ho (a1) (a2), Tsu-Hung Lin (a3), Yi-Wen Chen (a3), Wei-Cheng Tian (a1), Pei-Kuen Wei (a2) and Horn-Jiunn Sheen (a3)...


A photoactivated ZnO nanomesh with precisely controlled dimensions and geometries is fabricated by using nanosphere lithography process. The nanomesh structures effectively increase the surface-to-volume ratio to improve the sensing response under the same testing gas. And the periodical nanostructures also increase the effective light path and lead to more efficient light activation for gas sensing. With the increase of the photoinduced oxygen ions by UV illumination, a distinguished sensing response is observed at room temperature. In the optimized case, the sensing response (△R/R0) of the ZnO nanomesh at the butanol concentration of 500 ppm is 97.5%, which is 4.54 times higher than the unpatterned one.


Corresponding author


Hide All
1. Deen, M.J., Kazemeini, M.H. and Holdcroft, S.: Contact effects and extraction of intrinsic parameters in poly(3-alkylthiophene) thin film field-effect transistors. Journal of Applied Physics 103, 124509 (2008).
2. Arafat, M.M., Dinan, B., Akbar, S.A. and Haseeb, A.S.M.A.: Gas Sensors Based on One Dimensional Nanostructured Metal-Oxides: A Review. Sensors 12, 7207 (2012).
3. Wang, C., Yin, L., Zhang, L., Xiang, D. and Gao, R.: Metal Oxide Gas Sensors: Sensitivity and Influencing Factors. Sensors 10, 2088 (2010).
4. Franke, M.E., Koplin, T.J. and Simon, U.: Metal and metal oxide nanoparticles in chemiresistors: does the nanoscale matter? Small 2, 36 (2006).
5. Suehle, J.S., Cavicchi, R.E., Gaitan, M. and Semancik, S.: Tin oxide gas sensor fabricated using CMOS micro-hotplates and in-situ processing. Electron Device Letters, IEEE 14, 118 (1993).
6. Tian, W.-C., Ho, Y.-H., Chen, C.-H. and Kuo, C.-Y.: Sensing Performance of Precisely Ordered TiO2 Nanowire Gas Sensors Fabricated by Electron-Beam Lithography. Sensors 13, 865 (2013).
7. Fang, Q., Chetwynd, D.G., Covington, J.A., Toh, C.S. and Gardner, J.W.: Micro-gas-sensor with conducting polymers. Sensors and Actuators B: Chemical 84, 66 (2002).
8. Li, C.-L., Chen, Y.-F., Liu, M.-H. and Lu, C.-J.: Utilizing diversified properties of monolayer protected gold nano-clusters to construct a hybrid sensor array for organic vapor detection. Sensors and Actuators B: Chemical 169, 349 (2012).
9. Plum, T.J., Saxena, V. and Jessing, J.R.: Design of a MEMS capacitive chemical sensor based on polymer swelling, in Microelectronics and Electron Devices, 2006. WMED '06. 2006 IEEE Workshop on (2006), pp. 2 pp.
10. Baltes, H., Lange, D. and Koll, A.: The electronic nose in Lilliput. Spectrum, IEEE 35, 35 (1998).
11. Lang, H.P., Berger, R., Battiston, F., Ramseyer, J.P., Meyer, E., Andreoli, C., Brugger, J., Vettiger, P., Despont, M., Mezzacasa, T., Scandella, L., Güntherodt, H.J., Gerber, C. and Gimzewski, J.K.: A chemical sensor based on a micromechanical cantilever array for the identification of gases and vapors. Appl Phys A 66, S61 (1998).
12. Maute, M., Raible, S., Prins, F.E., Kern, D.P., Ulmer, H., Weimar, U. and Göpel, W.: Detection of volatile organic compounds (VOCs) with polymer-coated cantilevers. Sensors and Actuators B: Chemical 58, 505 (1999).
13. Lerchner, J., Seidel, J., Wolf, G. and Weber, E.: Calorimetric detection of organic vapours using inclusion reactions with organic coating materials. Sensors and Actuators B: Chemical 32, 71 (1996).
14. Comini, E., Cristalli, A., Faglia, G. and Sberveglieri, G.: Light enhanced gas sensing properties of indium oxide and tin dioxide sensors. Sensors and Actuators B: Chemical 65, 260 (2000).
15. Tien, L.C., Sadik, P.W., Norton, D.P., Voss, L.F., Pearton, S.J., Wang, H.T., Kang, B.S., Ren, F., Jun, J. and Lin, J.: Hydrogen sensing at room temperature with Pt-coated ZnO thin films and nanorods. Applied Physics Letters 87, 22106 (2005).
16. Arnold, S.P., Prokes, S.M., Perkins, F.K. and Zaghloul, M.E.: Design and performance of a simple, room-temperature Ga2O3 nanowire gas sensor. Applied Physics Letters 95 (2009).
17. Young-Jin, C., In-Sung, H., Jae-Gwan, P., Kyoung Jin, C., Jae-Hwan, P. and Jong-Heun, L.: Novel fabrication of an SnO 2 nanowire gas sensor with high sensitivity. Nanotechnology 19, 095508 (2008).
18. Anothainart, K., Burgmair, M., Karthigeyan, A., Zimmer, M. and Eisele, I.: Light enhanced NO2 gas sensing with tin oxide at room temperature: conductance and work function measurements. Sensors and Actuators B: Chemical 93, 580 (2003).
19. Fan, S.-W., Srivastava, A.K. and Dravid, V.P.: UV-activated room-temperature gas sensing mechanism of polycrystalline ZnO. Applied Physics Letters 95, 142106 (2009).
20. Tian, W.-C., Ho, Y.-H. and Chou, C.-H.: Photoactivated TiO2 Gas Chromatograph Detector for Diverse Chemical Compounds Sensing at Room Temperature. Sensors Journal, IEEE 13, 1725 (2013).
21. Shapira, Y., Cox, S.M. and Lichtman, D.: Photodesorption from powdered zinc oxide. Surface Science 50, 503 (1975).
22. Shapira, Y., McQuistan, R.B. and Lichtman, D.: Relationship between photodesorption and surface conductivity in ZnO. Physical Review B 15, 2163 (1977).
23. Comini, E., Faglia, G. and Sberveglieri, G.: Solid state gas sensing, (Springer2009).
24. Saura, J.: Gas-sensing properties of SnO2 pyrolytic films subjected to ultrviolet radiation. Sensors and Actuators B: Chemical 17, 211 (1994).
25. Comini, E., Faglia, G. and Sberveglieri, G.: UV light activation of tin oxide thin films for NO2 sensing at low temperatures. Sensors and Actuators B: Chemical 78, 73 (2001).


Photoactivated Metal-Oxide Gas Sensing Nanomesh by Using Nanosphere Lithography

  • Yu-Hsuan Ho (a1) (a2), Tsu-Hung Lin (a3), Yi-Wen Chen (a3), Wei-Cheng Tian (a1), Pei-Kuen Wei (a2) and Horn-Jiunn Sheen (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed