Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-26T11:08:47.749Z Has data issue: false hasContentIssue false

Phosphorus and Aluminum Gettering of Gold in Silicon: Simulation and Optimization Considerations

Published online by Cambridge University Press:  26 February 2011

R. Gafiteanu
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
U. Gösele
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
T. Y. Tan
Affiliation:
Department of Mechanical Engineering and Materials Science, Duke University, Durham, NC 27708-0300
Get access

Abstract

Using the diffusion-segregation equation, modeling and simulations of gettering Au (a substi-tutional-interstitial species in Si) away from the Si bulk have been performed. Three external gettering schemes have been considered: wafer frontside P indiffusion gettering, wafer backside Al deposition gettering, and a combination of the two processes. Under the same processing conditions, it has been shown that P indiffusion gettering is faster than Al gettering, but P gettering has a lower gettering capacity and is less stable than Al gettering for longer gettering times. The combined P and Al gettering process is as fast as P gettering in reaching an optimum gettered state, and possesses the capacity and stability of the Al gettering process.

Type
Research Article
Copyright
Copyright © Materials Research Society 1995

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Tan, T. Y., Gardner, E. E., and Tice, W. K., Appl. Phys. Lett. 30, 175 (1977).Google Scholar
2. Pasquinelli, M., Martinuzzi, S., Natoli, J. Y., and Floret, F., in Proceedings of the 22nd IEEE PV Specialists Conference, Las Vegas, NV, 1991 (IEEE, New York, 1991), pp. 10351037.Google Scholar
3. Loghmarti, M., Stuck, R., Muller, J. C., Sayah, D., and Siffert, P., Appl. Phys. Lett. 62, 979 (1993).Google Scholar
4. Hartiti, B., Slaoui, A., Muller, J. C., and Siffert, P., Appl. Phys. Lett. 63, 1249 (1993).Google Scholar
5. Sana, P., Rohatgi, A., Kalejs, J. P., and Bell, R. O., Appl. Phys. Lett. 64, 97 (1994).Google Scholar
6. Schröter, W., Seibt, M., Gilles, D., Ch. 11 of "Electronic Structure and Properties of Semiconductors", Vol. 4 of "Materials Science and Technology: A Comprehensive Treatment" eds. Cahn, R. W., Haasen, P., and Kramer, E. J., Vol. 4 ed. W. Schroter (1991), p. 576.Google Scholar
7. Tan, T. Y., Gafiteanu, R., You, H.-M., Gösele, U. (1993), in Proceedings of the National Renewable Energy Laboratory Third Workshop on Point Defects (Vail, CO).Google Scholar
8. You, H.-M., Gösele, U., and Tan, T. Y., J. Appl. Phys. 74, 2461 (1993).Google Scholar
9. Gafiteanu, R., You, H.-M., Gösele, U. M., and Tan, T. Y. (1993), in Interface control of Electrical, Chemical, and Mechanical Properties, eds. Muraka, S. P., Omi, T., Rose, K., and Seidel, T.. Mater. Res. Soc. Proc. 318 (Mater. Res. Soc, Pittsburgh, PA, 1994) p. 31.Google Scholar
10. Tan, T. Y., Gafiteanu, R., Gösele, U., in Semiconductor Silicon 1994, eds. Huff, H. R., Bergholz, W., and Sumino, K. (The Electrochem. Soc., Pennington, PA, 1994) p. 920.Google Scholar
11. Orlowski, M., Appl. Phys. Lett. 53, 1323 (1988).Google Scholar
12. Gösele, U., Frank, W., A. Seeger, Appl. Phys., 23, 361 (1980).Google Scholar
13. Jüngling, W., Pichler, P., Selberherr, S., Guerrero, E., and Pötzl, H. W., IEEE Trans. Electron. Devices ED–32, 156 (1985).Google Scholar
14. Chou, S. L. and Gibbons, J. F., J. Appl. Phys. 46, 1197 (1975).Google Scholar
15. Kang, J. S. and Schroder, D. K., J. Appl. Phys. 65, 2974 (1989).Google Scholar
16. Shockley, W. and Last, J., Phys. Rev. 107, 392 (1957).Google Scholar
17. Ledebo, L-A. and Wang, Zhan-Guo, Appl. Phys. Lett. 42, 680 (1983).Google Scholar
18. Tan, T. Y. and Gösele, U., Appl. Phys. A 37, 1 (1985).Google Scholar
19. Wilcox, W. R. and LaChapelle, T. J., J. Appl. Phys. 35, 240 (1964).Google Scholar
20. Stolwijk, N. A., Schuster, B., and Holzl, J., Appl. Phys. A 33, 133 (1984).Google Scholar
21. Ho, C. P., Plummer, I. D., Hansen, S. E. and Dutton, R. W., IEEE ED–30, 1438 (1983).Google Scholar
22. Sveinbjornsson, E. Ö., Engstrom, O. and Södervall, U., J. Appl. Phys. 73, 7311 (1993).Google Scholar