Hostname: page-component-7479d7b7d-fwgfc Total loading time: 0 Render date: 2024-07-10T13:31:33.387Z Has data issue: false hasContentIssue false

Phase Transformation and Densification Behavior of Microwave Sintered γ-A12O3

Published online by Cambridge University Press:  15 February 2011

John Freim
Affiliation:
University of California, San Diego, La Jolla, CA 92093–0411
Joanna McKittrick
Affiliation:
University of California, San Diego, La Jolla, CA 92093–0411
Joel Katz
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Kurt Sickafus
Affiliation:
Los Alamos National Laboratory, Los Alamos, NM 87545
Get access

Abstract

The phase transformation and densification behavior of gas condensation synthesized γA12O3 sintered with microwave radiation has been studied. Nucleation and growth phase transformations, which produce α-A12O3 occurred as the material was heated through the temperature range of 800–1300°C. These phase transformations resulted in anomalous grain growth with a distinct change in particle morphology, crystallite size and surface area. A12O3 derived from a chemically synthesized boehmite precursor has been shown to exhibit the same nucleation and growth phase transformation behavior when conventionally heated. It is concluded that nanocrystalline γ or β alumina will not be a viable starting material for the production of dense bodies with grain sizes of less than 100 nm.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Siegei, R.W., Ramasamy, S., Hahn, H., Zonghuan, Z., Ting, L., J. Mater. Res. 3(6), 1367 (1988).Google Scholar
2. Gunthier, B., Kumpmann, A., Nanostructured Materials 1, 27 (1992).Google Scholar
3. Averback, R.S., Hofler, H.J., Hahn, H., Logas, J.C., Nanostructured Materials 1, 173 (1992).Google Scholar
4. Hofler, H.J., Averback, R.S., Scripta. Metall. 24, 2401 (1990).Google Scholar
5. Hahn, H., Logas, J.C., Averback, R.S., J. Mater. Res. 5(3), 609 (1990).Google Scholar
6. Cui, Z., Hahn, H., Nanostructured Materials 1, 419 (1992).Google Scholar
7. Hahn, H., Averback, R.S., Nanostructured Materials 1, 95 (1992).Google Scholar
8. Mayo, M.J., Siegel, R.W., Narayanasamy, A., Nix, W.D., J. Mater. Res. 5(5), 1073 (1990).Google Scholar
9. Guermazi, M., Hofler, H., Hahn, H., Averback, R.S., J. Am. Ceram. Soc. 74(10), 2672 (1991).Google Scholar
10. Hahn, H., Averback, R.S., J. Am. Ceram. Soc. 74(11), 2918 (1991).Google Scholar
11. Skandan, G., Foster, C.M., Frase, H., Ali, M.N., Parker, J.C., Hahn, H., Nanostructured Materials 1, 313 (1992).Google Scholar
12. Skandan, G., Hahn, H., Parker, J.C., Scripta. Metall. 25, 2389 (1991).Google Scholar
13. Chang, W., Cosandry, F., Hahn, H., Nanostructured Materials 2, 29 (1993).Google Scholar
14. Hahn, H., Nanostructured Materials 2, 251 (1993).Google Scholar
15. Coble, R.L., J. Appl. Phys. 32(5), 787 (1961).Google Scholar
16. Lippens, B.C., deBoer, J.H., Acta. Cryst. 17, 1312 (1964).Google Scholar
17. Iler, R.K., J. Am. Ceram. Soc. 44, 618 (1961).Google Scholar
18. Badkar, P.A., Bailey, J.E., J. Mat. Sci. 11, 1794 (1976).Google Scholar
19. Tsai, D., Hsieh, C., J. Am. Ceram. Soc. 74(4), 830 (1991).Google Scholar
20. Kumagai, M., Messing, G.L., J. Am. Ceram. Soc. 68(9), 505 (1985).Google Scholar
21. Ayral, A., Philippou, J., Advanced Ceramic Materials 3(6), 575 (1988).Google Scholar
22. Chou, T.C., Nieh, T.G., J. Am. Ceram. Soc. 74(9), 2207 (1991).Google Scholar
23. Lange, F.F., J. de Phys. Coll. C1, Suppl. no. 2. 47, Cl205 (1986).Google Scholar
24. Brook, R.J., Proc. Brit. Ceram. Soc. 32, 7 (1982).Google Scholar
25. Katz, J.D., Annu. Rev. Mater. Sci. 1992. 22, 153 (1992).Google Scholar
26. Eastman, J.A., Sickafus, K.E., Katz, J.D., Boeke, S.G., Blake, R.D., Evans, C.R., Schwarz, R.B., Liao, Y.X., Mat. Res. Symp. Proc. 189, 273 (1991).Google Scholar
27. Cullity, B.D., in Elements of X-Ray Diffraction. 2nd ed. (Addison Wesley, Reading, Mass., 1978), p. 102.Google Scholar
28. Porter, D.A., Easterling, K.E., in Phase Transformations in Metals and Alloys, 2nd ed. (Chapman and Hall, London, 1992), pp. 186–94.Google Scholar