Hostname: page-component-77c89778f8-rkxrd Total loading time: 0 Render date: 2024-07-19T23:11:39.545Z Has data issue: false hasContentIssue false

Phase Separation In Blends of Polystyrene and Poly (P-METHYLSTYRENE) Using Thermal Analysis And Small-Angle Neutron Scattering

Published online by Cambridge University Press:  15 February 2011

A. Xenopoulos
Affiliation:
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6197, and Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600
J. D. Londono
Affiliation:
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6197, and Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600
G. D. Wígnall
Affiliation:
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6197, and Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600
B. Wunderlich
Affiliation:
Chemistry Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831-6197, and Department of Chemistry, University of Tennessee, Knoxville, TN 37996-1600
Get access

Abstract

Differential scanning calorimetry (DSC) was used to study blends of polystyrene (PS) and poly (p-Methylstyrene) (PpmS). The presence of two glass transitions on heating after quenching was interpreted as evidence of phase separation at the temperature of the liquid before quenching. The small difference between the glass transitions of the homopolymers in the PS/PpmS system of “13 K limits the reliable detection of double glass transitions for blends to concentrations between 30 and 70%. The results of the DSC technique are supported by comparison with small angle neutron scattering (SANS) data.

Type
Research Article
Copyright
Copyright © Materials Research Society 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Flory, P. J., Principles of Polymer Chemistry (Cornell Univ. Press, Ithaca, NY, 1953).Google Scholar
Huggins, M. L., Physical Chemistry of High Polymers (John Wiley and Sons, New York, NY, 1958).Google Scholar
2. Wignall, G. D. in Encyclopedia of Polym. Sci. Eng., 10, 112 (1987).Google Scholar
3. Schweizer, K. S. and Curro, J., Phys. Rev. Lett., 60, 809 (1988).Google Scholar
4. Wunderlich, B., Thermal Analysis (Academic Press, Boston, MA, 1990).Google Scholar
5. Alamo, R. G., Londono, J. D., Mandelkern, L., Stehling, F. C., and Wignall, G. D., Macromolecules, (submitted).Google Scholar
6. Londono, J. D., Narten, A. H., Wignall, G. D., Honnell, K. G., Hsieh, E. T., Johnson, T. W., and Bates, F. S., Macromolecules, (submitted).Google Scholar
7. Bates, F. S., Muthukumar, M., Wignall, G. D., and Fetters, L. J., J. Chem. Phys., 89, 535 (1988).Google Scholar
8. Jung, W. G., Fischer, E. W., Makromol. Chemie, Makromol. Symp., 16, 281 (1988).Google Scholar
9. Lau, S.-f., Pathak, J., and Wunderlich, B., Macromolecules, 15, 1278 (1982).Google Scholar
10. Londono, J. D., Wignall, G. D. (in preparation).Google Scholar
11. Patnode, W., Scheiber, W. J., J. Am. Chem. Soc, 61, 3449 (1939).Google Scholar
Corneliussen, R., Rice, S. A. and Yamakawa, H., J. Chem. Phys., 38, 1768 (1963).Google Scholar
12. Gaur, U. and Wunderlich, B., Macromolecules, 13, 1618 (1980).Google Scholar