Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T17:34:49.862Z Has data issue: false hasContentIssue false

Phase Selection in Undercooled Liquids of Pulsed-Laser Melted Alloys

Published online by Cambridge University Press:  26 February 2011

D. M. Follstaedt
Affiliation:
Sandia National Laboratories, Division 1112, Albuquerque, NM 87185-5800
P. S. Peercy
Affiliation:
Sandia National Laboratories, Division 1112, Albuquerque, NM 87185-5800
J. H. Perepezko
Affiliation:
University of Wisconsin, Department of Metallurgical and Mineral Engineering, 1509 University Ave., Madison, WI 53706
Get access

Abstract

The use of thermodynamic analysis of phase relationships to identify metastable conditions for generating undercooled liquids by pulsed laser melting, and to interpret the resulting microstructures is illustrated from studies of Mn, FeV and TiAl. Phases with simple, disordered structures are found to nucleate and grow within tens of nanoseconds in liquids undercooled by 50–100 K. An extended transformation depth is found in which the stable high-temperature a phase replaces the metastable a phase in FeV due to the heat release from the rapidly forming a phase. The formation of the disordered bcc structure and of a metallic glass in the melt of the ordered compound γ-TiAl indicate that regrowth of this phase is sufficiently slow to generate undercoolings of – 1000 K.

Type
Research Article
Copyright
Copyright © Materials Research Society 1988

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Jones, H., “Rapid Solidification of Metals and Alloys,” Monograph #8 (Institution of Metallurgists, London, 1982).Google Scholar
2. Perepezko, J. H. and Boettinger, W. J. in Alloy Phase Diagrams, edited by Bennett, L. H., Massalski, T. B. and Giessen, B. C. (Mater. Res. Soc. Proc. 19, Elsevier, New York, 1983), pp. 223240.Google Scholar
3. Turnbull, D., J. Chem. Phys. 20, 411 (1952).Google Scholar
4. Turnbull, D., Contemp. Phys. 10, 473 (1969).Google Scholar
5. Cahn, J. W., Hillig, W. B. and Sears, G. W., Acta. Met. 12, 1421 (1964).Google Scholar
6. Turnbull, D. and Cech, R., J. Appl. Phys. 21, 894 (1950).Google Scholar
7. Perepezko, J. H., Mat. Sci. Eng. 65, 125 (1984).Google Scholar
8. Follstaedt, D. M., Peercy, P. S. and Perepezko, J. H., Appl. Phys. Lett. 48, 338 (1968).Google Scholar
9. Perepezko, J.H., Follstaedt, D.M. and Peercy, P.S. in Beam-Solid Interactions and Phase Transformations, edited by Kurz, H., Olsen, G.L. and Poate, J.M. (Mat. Res. Soc. Proc. 51, Pittsburgh, PA, 1986), pp. 297302.Google Scholar
10. Perepezko, J. H., Follstaedt, D. M. and Peercy, P. S. in Beam-Solid Interactions and Transient Processes, ed. by Thompson, M.O., Picraux, S.T. and Williams, J.S. (Mat. Res. Soc. Proc. 74, Pittsburgh, PA 1987) pp. 161166.Google Scholar
11. Graves, J. A., Perepezko, J. H., Ward, C. H. and Froes, F. H., Scripta Met. 21, 567 (1987).Google Scholar
12. Follstaedt, D. M. in Laser and Electron-Beam Interactions with Solids, edited by Appleton, B. R. and Celler, G. K. (Mater. Res. Soc. Proc. 4, Elsevier, New York, 1982), pp. 377388.Google Scholar
13. Buene, L., Kaufmann, E. N., Preece, C. M. and Draper, C. W. in Laser and Electron-Beam Solid Interactions and Materials Processing edited by Gibbons, J. F., Hess, L. D. and Sigmon, T. W. (Mater. Res. Soc. Proc. Elsevier, New York, 1981), pp. 591598.Google Scholar
14. Vitta, S., Greer, A. L. and Somekh, R. E. to appear in Proc. Sixth Intl. Conf. on Rapidly Quenched Metals, Montreal, Canada 1987.Google Scholar
15. Lin, C.-J. and Spaepen, F., Appl. Phys. Lett. 41, 721 (1982).Google Scholar
16. Thompson, M.O., Galvin, G.J., Mayer, J.W., Peercy, P.S., Poate, J.M., Jacobson, D.C., Cullis, A.G. and Chew, N.G., Phys. Rev. Lett. 52, 2360 (1984).Google Scholar
17. Thompson, Michael O., Mayer, J. W., Cullis, A. G., Webber, H. C., Chew, N.G., Poate, J. M. and Jacobson, D.C., Phys. Rev. Lett. 50, 896 (1983).Google Scholar
18. Peercy, P. S. and Wampler, W. R., Appl. Phys. Lett. 40, 768 (1982).Google Scholar
19. Tsao, J. Y., Picraux, S. T., Peercy, P. S. and Michael Thompson, O., Appl. Phys. Lett. 48, 278 (1986).Google Scholar
20. Peercy, P. S., Follstaedt, D. M., Picraux, S. T. and Wampler, W. R. in Laser and Electron-Beam Interactions with Solids, ed. by Appleton, B. R. and Celler, G. K. (Mat. Res. Soc. Proc. 4 Elsevier, NY, 1982), pp. 401406.Google Scholar
21. Turnbull, D., in Undercooled Alloy Phases, edited by Collings, E. W. and Koch, C. C., (TMS, 1986) pp. 122.Google Scholar
22. Hultgren, R., Desai, P. D., Hawkins, D. T., Gleiser, M., Kelley, K. K. and Wagman, D. D., Selected Values of the Thermodynamic Properties of the Elements, (ASM, Metals Park, Ohio, 1973), p. 301.Google Scholar
23. Pearson, W. B., Handbook of Lattice Spacings and Structures of Metals and Alloys (Pergamon, Oxford, 1958), Vol. I, p. 734.Google Scholar
24. Perepezko, J. H. and Paik, J. S., J. Non-Cryst. Sol. 61, 113 (1984).Google Scholar
25. Weiss, R. J. and Tauer, K. J., J. Phys. Chem. Sol. 4, 135 (1958).Google Scholar
26. Fehling, J. and Scheil, E., Z. Metallkunde 53, 593 (1962).Google Scholar
27. Kubaschewski, O., Iron-Binary Phase Diagrams, (Springer-Verlag, NY 1982).Google Scholar
28. Hack, K., Nussler, H. D., Spencer, P. J. and Iden, G., CALPHAD VIII, Stockholm, May 1979, p. 224.Google Scholar
29. Kitchingman, W. J. and Bedford, G. M., Metal. Sci. J. 5, 121 (1971).Google Scholar
30. Seki, J. I., Hagiwara, M. and Suzuki, T., J. Mat. Sci. 14, 2404 (1979).Google Scholar
31. Cullis, A.G., Webber, H.C. and Chew, N.G., Appl. Phys. Lett. 36, 547 (1980).Google Scholar
32. Gilmer, G. H. and Leamy, H. J., in Laser and Electron Beam Processing of Materials, ed. White, C.W. and Peercy, P.S. (Academic, NY 1980) pp. 227233.Google Scholar
33. Tsao, J. Y. and Peercy, P. S., Phys. Rev. Lett. 58, 2782 (1980).Google Scholar
34. Murray, J. L., submitted to Met. Trans.Google Scholar
35. Jackson, K. A. in Crystal Growth and Characterization, edited by Ueda, R. and Mullin, J. B. (North-Holland, Amsterdam, 1975), p. 21.Google Scholar
36. Kubaschewski, O. and Alcock, C. B., Metallurgical Thermochemistry (Pergamon Press, New York, 1979).Google Scholar
37. Hseih, K. C., Chang, Y. A. and Perepezko, J. H., to be published.Google Scholar
38. Nash, P. and Schwartz, R. B., private communication.Google Scholar
39. Whang, S. H., Li, Z. X. and Vujic, D., in High-Temperature Ordered Intermetallic Alloys II (Mat. Res. Soc. Proc. 81, Pittsburgh, PA, 1987), pp. 151156; S.C. Huang, E.L. Hall and M.F.X. Gigliotti, in High-Temperature Ordered Intermetallic Alloys II (Mat. Res. Soc. Proc. 81, Pittsburgh, PA, 1987), pp. 481–486.Google Scholar
40. Schultz, L., to be published in proceedings of the Conference on Solid-State Amorphizing Transformations, Los Alamos, NM, August 10-13, 1987.Google Scholar
41. Follstaedt, D.M., Picraux, S.T., Peercy, P.S., Knapp, J.A. and Wampler, W.R. in Rapidly Solidified Metastable Materials, ed. by Kear, B.H. and Giessen, B.C. (Mat. Res. Soc. Proc. 28, North-Holland, NY 1984) pp. 273277.Google Scholar