Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-23T09:41:27.104Z Has data issue: false hasContentIssue false

Phase Segregation in Sipos: Formation of Si Nanocrystals

Published online by Cambridge University Press:  09 August 2011

A. Vilà
Affiliation:
Electronic Materials and Engineering, EME. Department of Electronics. University of Barcelona. C/ Martí i Franquès, l. Barcelona 08028. Spain., anna@el.ub.es
J. R. Morante
Affiliation:
Electronic Materials and Engineering, EME. Department of Electronics. University of Barcelona. C/ Martí i Franquès, l. Barcelona 08028. Spain., anna@el.ub.es
B. Caussat
Affiliation:
LGC, UMR CNRS 5503, 18 chemin de la Loge. 31078 Toulouse Cedex, FRANCE.
P. Barathieu
Affiliation:
LAAS, UPR CNRS 8001, 7 av. du Colonel Roche, 31077 Toulouse Cedex, FRANCE.
E. Scheid
Affiliation:
LAAS, UPR CNRS 8001, 7 av. du Colonel Roche, 31077 Toulouse Cedex, FRANCE.
Get access

Abstract

A characterization of Semi-insulating Polycrystalline Silicon (SIPOS) layers deposited from SiH4 on SiO2 is presented, as a function of growth and annealing conditions (time and temperature), in order to better understand the processes involved in nucleation of silicon nanocrystals. Correlation between optical and XPS measurements allows determination of the starting composition of the amorphous material. After annealing, Fourier transform infrared (FTIR), ultraviolet-visible and Raman spectroscopies have been used to determine the structural and optical characteristics of the resulting material. Thermal treatment promotes a phase separation, modifying the layer properties and degrading the electrical insulation characteristics. Concentration of the silicon dioxide phase increases, whereas elemental silicon precipitates into nanocrystals which nucleate near the interface with the underneath SiO2. Their density depends of the initial silicon content in the SIPOS layer, and some directions such as <1I1> and <220> grow preferentially whereas other directions such as <311> show a slower growth. As the percentage of oxygen increases, the formation of precipitates is less marked.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1 Hitchman, M. L. and Kane, J., J. Cryst. Growth 55, 485 (1981): M.L. Hitchman and A.E. Widmer, 55. 501 (1981).Google Scholar
2 Bennet, A. J. and Roth, L. M., Phys. Rev. B 4,2686 (1971).Google Scholar
3 Fortunato, G. and Salla, D. Della, J. Non-Cryst. Solids 97–98, 423 (1987).Google Scholar
4 Kucirkova, A., Navrdtil, K., Pajasova, L. and Vorlfcek, V., Appl. Phys. A 63, 495 (1996).Google Scholar
5 Compagnini, G., Lombardo, S., Reitano, R. and Campisano, S. O., J. Mat. Res. 10, 885 (1995).Google Scholar
6 Ching, W. Y., Phys. Rev. B 26, 6610 (1982).Google Scholar
7 Niklasson, G. A. and Granqvist, C. G., J. Appl. Phys. 55, 3382 (1984).Google Scholar
8 Ni, J. and Arnold, E., Appl. Phys. Lett. 39, 554 (1981).Google Scholar
9 Chang, K. T., Lam, C. and Rose, K., Mat. Res. Soc. Symp. Proc. 105, 193 (1988).Google Scholar
10 Kanemitsu, Y., Phys. Rev. B 53 (20), 13515 (1996).Google Scholar
11 Benkherourou, O. and Deville, J. P., J. Vac. Sci. Technol. A 6 (6), 3125 (1988).Google Scholar