Skip to main content Accessibility help

Phase Segregation in Manganese Perovskites

  • P.G. Radaelli (a1), D.N. Argyriou (a2), D.E. Cox (a3), L. Capogna (a4), H. Casalta (a4), K. Andersen (a4), S-W. Cheong (a5) (a6), J.F. Mitchell (a7) and M. Marezio (a8)...


The structural, magnetic and transport phase diagrams of the manganese perovskites (general formula: A1-xA'xMnO3) are characterised by a variety of exotic phenomena, including high-temperature polaronic behaviour, charge, orbital and magnetic ordering and colossal magnetoresistance (CMR). These properties can be “tuned” by changing the doping level x, the electronic bandwidth (through the average A-site ionic radius, <rA>), and the A-site disorder, and are believed to be a manifestation of the underlying competition between electron-lattice coupling and double exchange. Usually, at low temperatures, one of these two interactions is dominant, resulting in a homogeneous ground state, which is either a metallic ferromagnet or a charge-ordered insulator. We have recently found, however, that, for special points in the phase diagram (x ~ 0.3,,<rA> ~ 1.18 Å), the competition can be preserved down to low temperatures, resulting in an inhomogeneous ground state at the microscopic level. This unusual state is characterised by the coexistence of charge-ordered and metallic domains, which are intertwined over a variety of length-scales, and appear to show spin-glass-like dynamics. Upon application of an external field (magnetic field, pressure or even x-rays), the domains grow to macroscopic sizes, resulting in phase segregation. We speculate that the evolution of the local magnetic and crystal structures during this phase segregation process may parallel those occurring, at much higher temperatures, for compounds displaying CMR behaviour at the paramagnetic-toferromagnetic transition. Very recently, it has been suggested that the charge-ordered state, which is stable for higher values of the Mn oxidation state (x ≥ 0.5), may also be associated with modulated mesoscopic phase segregation, in the form of “stripes”. This hypothesis will be discussed in the light of recent x-ray synchrotron and neutron diffraction data on the crystallographic and magnetic modulation in La0.33Ca0.67MnO3



Hide All
1. Jonker, G. H., Santen, J. H. V., Physica 16, 337 (1950).
2. Wollan, E. O., Koehler, W. C., Phys. Rev. 100, 545563 (1955).
3. Goodenough, J. B., Phys. Rev. 100, 564573 (1955).
4. Zener, C., Phvs. Rev. 82, 403405 (1951).
5. Anderson, P. W., Hasegawa, H., Phys. Rev. 100, 675681 (1955).
6. Kubo, K., Ohata, N., Journal of the Physical Society of Japan 33, 21 (1972).
7. Rao, C. N. R., Philosophical Transactions of the Royal Society of London Series a-Mathematical Physical and Engineering Sciences 356, 2338 (1998).
8. Furukawa, N., J Phys Soc Jpn 64, 27342737 (1995).
9. Bishop, A. R., Roder, H., Current Opinion in Solid St. & Mat. Sci. 2, 224251 (1997).
10. Millis, A. J., Shraiman, B. I., Mueller, R., Physical Review Letters 77, 175178 (1996).
11. Dai, P., et al. , Physical Review B 54, 36943697 (1996).
12. Radaelli, P. G., et al. , Phys Rev Lett 75, 44884491 (1995).
13. Radaelli, P. G., Marezio, M., Hwang, H. Y., Cheong, S.-W., Battlog, B., Physical Review B 54, 89928995 (1996).
14. Tyson, T. A., et al. , Phys Rev B-Condensed Matter 53, 1398513988 (1996).
15. Billinge, S. J. L., Difrancesco, R. G., Kwei, G. H., Neumeier, J. J., Thompson, J. D., Phys Rev Lett 77, 715718 (1996).
16. Zhou, J.-S., Goodenough, J. B., Physical Review Letters 80, 26652668 (1998).
17. Kaplan, S. G., et al. , Phys Rev Lett 77, 20812084 (1996).
18. Zhao, G. M., Conder, K., Keller, H., Muller, K. A., Nature 381, 676678 (1996).
19. De Teresa, J. M., et al. , Nature 386, 256259 (1997).
20. Lynn, J. W., et al. , Phys Rev Lett 76, 40464049 (1996).
21. Chen, C. H., Cheong, S.-W., Hwang, H. Y., Journal of Applied Physics 81, 43264330 (1997).
22. Mori, S., Chen, C. H., Cheong, S.-W., Nature (London) 392, 473476 (1998).
23. Tranquada, J. M., Sternlieb, B. J., Axe, J. D., Nakamura, Y., Uchida, S., Nature 375, 561563 (1995).
24. Lee, S.-H., Cheong, S.-W., Physical Review Letters 79, 25142517 (1997).
25. Radaelli, P. G., Cox, D. E., Marezio, M., Cheong, S.-W., Phys.Rev.B 55, 3015 (1997).
26. Kiryukhin, V., et al. , Nature 386, 813815 (1997).
27. Fernandez-Baca, J. A., Dai, P., Hwang, H. Y., Kloc, C., Cheong, S.-W., Phys Rev.Lett. 80, 4012–405 (1998).
28. Hwang, H. Y., Cheong, S.-W., Radaelli, P. G., Marezio, M., Batlogg, B., Phys Rev.Lett. 75, 914917 (1995).
29. Cox, D. E., Radaelli, P. G., Marezio, M., Cheong, S.-W., Phys.Rev.B 57, 33053314 (1998).
30. Jirák, Z., Krupicka, S., Simsa, Z., Dlouhá, M., Vratislav, S., J.Mag.Mag.Mat. 53, 153166 (1985).
31. Yoshizawa, H., Kawano, H., Tomioka, Y., Tokura, Y., J Phys Soc Jpn 65, 10431052 (1996).
32. Yoshizawa, H., Kajimoto, R., Kawano, H., Tomioka, Y., Tokura, Y., Phys Rev B 55, 27292732 (1997).
33. Viret, M., Glätti, H., Fermon, C., Leon-Gevara, A. M. d., Revcolevschi, A., Europhys. Lett. 42, 301306 (1998).
34. Murani, A. P., Physical Review Letters 41, 14061409 (1978).
35. Raveau, B., Maignan, A., Caignaert, V., Journal of Solid State Chemistry 117, 424426 (1995).
36. Radaelli, P. G., Cox, D. E., Capogna, L., Cheong, S.-W., Marezio, M., Submitted to Phys. Rev. B (1998).
37. Fernandez-Diaz, M. T., Martinez, J. L., Alonso, J. M., Herrero, E., Phys.Rev.B, in press (1998).
38. Ahn, K. H., Millis, A. J., Phys.Rev.B 58, 36973703 (1998).

Related content

Powered by UNSILO

Phase Segregation in Manganese Perovskites

  • P.G. Radaelli (a1), D.N. Argyriou (a2), D.E. Cox (a3), L. Capogna (a4), H. Casalta (a4), K. Andersen (a4), S-W. Cheong (a5) (a6), J.F. Mitchell (a7) and M. Marezio (a8)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.