Hostname: page-component-5c6d5d7d68-thh2z Total loading time: 0 Render date: 2024-08-20T21:21:21.820Z Has data issue: false hasContentIssue false

Phase Modulator Defined by Impurities Induced Disordering

Published online by Cambridge University Press:  10 February 2011

K. M. Lo
Affiliation:
Qtiincy, MA
W. C. H. Choy
Affiliation:
Department of Electronic and Electrical Engineering, University of Surrey, U.K.
E. H. Li
Affiliation:
Department of Electrical and Electronic Engineering, University of Hong Kong, H.K.
Get access

Abstract

Optical waveguide type phase modulators defined by impurities induced disordering (IID) are investigated. To achieve a better optical confinement, a two steps ion implantation process is carried out to introduce additional impurities with respect to depth in the cladding region. A more uniform refractive index profile in deeper lateral confined region is obtained after thermal annealing. The refractive index different between the core and cladding can be adjusted by controlling the extension of interdiffusion in the cladding. This provide tuning of single mode operating region. For present IID phase modulator with 25 period of 100Å/100Å Al0.3Ga0.7As/GaAs multiple quantum wells single mode operating at 0.88//m, a normalized phase shift of 362°/Vmm. chirping parameter of 47, and absorption loss less than 120cm−1 are achieved theoretically.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Yoshida, S., Tada, Y., Kolaka, T., and Wakita, K., Electron. Lett. 30, 1795 (1994).Google Scholar
2. Tsang, H.K., Soole, J.B.D., Le Blane, H.P., Bhat, R., Koza, M.A., and White, L.H., Appl. Phys. Lett. 57, 2285 (1990).Google Scholar
3. Andrew, S.R., Marsh, J.H., Holland, M.C., and Kcan, A.H., IEEE Photon. Technol. Lett. 4. 426 (1992).Google Scholar
4. Miyazawa, T., Iwamura, H., and Nagamima, M., IEEE Photon. Technol. Lett. 3, 421 (1991).Google Scholar
5. Vien, C., Schneider, M., Mailly, D., Planell, R., Launois, H., Marzin, H.Y. and Descouts, B.. J. Appl. Phys. 70, 1444 (1991).Google Scholar
6. Poole, P.J., Charbonnesu, S., Dion, M., Aers, G.C., Buchana, M., Golderb, R.D., and Mitchell, I.V., IEEE Photon. Technol. Lett. 8, 16 (1996).Google Scholar
7. Deppe, D.G., Guido, L.H., Holonyak, M. Jr, Hsieh, K.C., Burnham, R.D., Thornton, D.L. and Paoli, E.L., Appl. Phys. Lett. 49, 510 (1986).Google Scholar
8. Kapon, E., Stoffel, N.G., Dobisz, E.A., and Bhat, R., Appl. Phys. Lett. 52, 351 (1988).Google Scholar
9. Bradley, P. J. and Parry, G., Electron. Lett. 25, 1349 (1989).Google Scholar
10. Briggs, D. and Seah, M. P., Eds., Ion and Neutral Spectroscopy, vol. 2 of Practical Surface Analysis, Wiley, Chicheater, 2nd (1992).Google Scholar
11. Li, E.H., Weiss, B.L., Chan, K.S., and Micallef, J., App. Phys. Lett. 62, 550 (1993).Google Scholar
12. Choy, W.C.H., and Li, E.H., IEEE J. of Quantum Electron., to be appeared.Google Scholar
13. Hewlett, S. J., and Ladouceur, F., J. Lightwave Technol. 13, 375 (1995).Google Scholar
14. Hausken, T., Yan, R. H., Simes, R. I., and Coldren, L. A., Appl. Phys. 55, 718 (1989).Google Scholar