Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-19T20:33:34.770Z Has data issue: false hasContentIssue false

Phase Formation, Stability and Superconducting Properties of Mechanically Alloyed Yttrium-Nickel-Borocarbides

Published online by Cambridge University Press:  16 February 2011

L. Ledig
Affiliation:
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
D. Hough
Affiliation:
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
C.-G. Oertel
Affiliation:
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
J. Eckert
Affiliation:
Institut für Festkörper- und Werkstofforschung, D-01 171 Dresden, Germany
W. Skrotzki
Affiliation:
Institut für Kristallographie und Festkörperphysik, TU Dresden, D-01062 Dresden, Germany
Get access

Abstract

The solid state reaction of YNi2B2C by mechanical alloying of elemental powders has been investigated by X-ray diffraction, transmission electron microscopy and susceptibility measurements. Depending on the ball milling parameters either nanocrystalline YNi2B2C or an amorphous phase can be produced. Crystallization of the amorphous phase by annealing at 893 K produces YNi2B2C as major and Ni2B as minor intermetallic compound. Superconductivity is only observed in the annealed state. However, the transition temperature is much lower than in arc-melted samples. This is discussed with respect to the nanocrystalline and amorphous state as well as deviations from stoichiometry produced by impurities introduced during milling.

Type
Research Article
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Gupta, L.C., Phil. Mag. 71, 777 (1998)Google Scholar
2. Nagarajan, R., J. Low Temp. Phys. 107, 517 (1997).Google Scholar
3. Gangopadhyay, A.K., Schuetz, A.J. and Schilling, J.S., Physica C 246, 317 (1995).Google Scholar
4. Godart, C., Alleno, E., Tominez, E., Gupta, L.C., Nagarajan, R., Hossain, Z., Lynn, J.W., Bonville, P., Hodges, J.A., Sanchez, J.P. and Felner, I., J. Solid State Chem. 133, 169 (1997).Google Scholar
5. Takagi, H., Cava, R.J., Eisaki, H., Uchida, S., Krajewski, J.J. and Peck, W.F. Jr., in Proc. 7. Int. Symp. on Superconductivity, edited by Tamafuji, K. and Morishita, T., (Springer, Berlin, 1995), p.9.Google Scholar
6. Eckert, J., Jost, K., De Haas, O. and Schultz, L., Mater. Sci. Forum 235-238, 133 (1997).Google Scholar
7. Eckert, J., Jost, K. and Schultz, L., Mat. Lett. 31, 329 (1997).Google Scholar
8. Hase, K., Holzapfel, B. and Schultz, L., Physica C 288, 28 (1997).Google Scholar
9. Chen, W.M., Phys. Rev. B 57, 57 (1998).Google Scholar
10. Sanchez, J.P., Vulliet, P., Godart, C., Gupta, L.C., Hossain, Z. and Nagarajan, R., Phys. Rev. B 54, 9421 (1996).Google Scholar
11. Xu, M., Cho, P.K., Canfield, P.C., Finnemore, D.K., Johnson, D.C. and Farrell, D.E., Physica C 235-240, 2533 (1994).Google Scholar
12. Johnston-Halperin, E., Fiedler, J., Farrell, D.E., Xu, M., Cho, B.K., Canfield, P.C., Finnemore, D.K. and Johnston, D.C., Phys. Rev. B 51, 12852 (1995).Google Scholar
13. Böske, T., Kielwein, M., Knupfer, M., Barman, S.R., Behr, G., Buchgeister, M., Golden, M.S. and Fink, J., Solid State Comm. 99, 23 (1996).Google Scholar
14. Buckel, W., Supraleitung, 2nd ed. (Physik Verlag, Weinheim, 1977), pp. 207213.Google Scholar
15. Belger, A., Jaenicke Rössler, U., Lipp, D., Wehner, B., Paufler, P. and Behr, G., Physica C 306, 277 (1998).Google Scholar
16. Ledig, L., Hough, D., Oertel, C.-G., Eckert, J. and Skrotzki, W., J. Alloys Comp., (1999) submitted.Google Scholar
17. Flükiger, R., Staudemann, J.L. and Fischer, P., J. Less-Common Met. 50, 253 (1976).Google Scholar