Hostname: page-component-77c89778f8-vpsfw Total loading time: 0 Render date: 2024-07-19T22:10:17.825Z Has data issue: false hasContentIssue false

Phase diagram and microstructure of microcrystalline and amorphous silicon: a numerical growth simulation

Published online by Cambridge University Press:  21 March 2011

Julien Bailat
Affiliation:
Institut de Microtechnique, Université de Neuchâtel Breguet 2, CH-2000 Neuchâtel, Switzerland
Evelyne Vallat-Sauvain
Affiliation:
Institut de Microtechnique, Université de Neuchâtel Breguet 2, CH-2000 Neuchâtel, Switzerland
André Vallat
Affiliation:
Institut de Microtechnique, Université de Neuchâtel Breguet 2, CH-2000 Neuchâtel, Switzerland
Arvind Shah
Affiliation:
Institut de Microtechnique, Université de Neuchâtel Breguet 2, CH-2000 Neuchâtel, Switzerland
Get access

Abstract

Growth dynamics and microstructure of thin-film silicon simulated by a 3D dynamical numerical model are investigated. The model, recently introduced, is characterized here with its phase diagram. It reproduces the main features of the growth and microstructure of thin film silicon: amorphous to crystalline phase transition, conical/columnar shape of the conglomerates of nanocrystals, surface roughness evolution of the layer. It is observed that preferential etching of the amorphous silicon is sufficient to reproduce qualitatively the surface evolution observed experimentally. In the presence of preferential etching, nucleation of the microcrystalline phase in the simulated layers always coincides with a surface roughness increase as observed experimentally. This model opens new perspectives for the simulation of thin-film microstructure and surface morphology.

Type
Research Article
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Meier, J., Dubail, S., Fluckiger, R., Fischer, D., Keppner, H., and Shah, A., 1st World Conference on Photovoltaic energy conversion 1, 409 (1994).Google Scholar
2. Chen, Y. and Wagner, S., Applied Physics Letters 75, 1125 (1999).Google Scholar
3. Bailat, J., Vallat-Sauvain, E., Feitknecht, L., Droz, C., and Shah, A., Journal of Applied Physics 93, 5727 (2003).Google Scholar
4. Collins, R. W., Ferlauto, A. S., Ferreira, G. M., Chen, C., Koh, Joohyun, Koval, R. J., Yeeheng Lee, Pearce, J. M., and Wronski, C. R., Solar Energy Materials and Solar Cells 78, 143 (2003).Google Scholar
5. Smy, T., Dew, S. K., and Joshi, R. V., Thin Solid Films 415, 32 (2002).Google Scholar
6. Bailat, J., Vallat-Sauvain, E., Vallat, A., and Shah, A., Journal of Non-Crystalline Solids (2004).Google Scholar
7. Guha, S., Yang, J., Williamson, D. L., Lubianiker, Y., Cohen, J. D., and Mahan, A. H., Applied Physics Letters 74, 1860 (1999).Google Scholar
8. Tsai, C. C., Amorphous silicon and related materials, Scientific, W., Editor. 1988.Google Scholar
9. Mates, T., Fejfar, A., Drbohlav, I., Rezek, B., Fojtik, P., Luterova, K., Kocka, J., Koch, C., Schubert, M. B., and Ito, M., Journal of Non-Crystalline Solids 299–302, 767 (2002).Google Scholar