Skip to main content Accessibility help

Perspectives on an Advanced Hydrogen Storage System: Platinum-Carbon Nanotube Nanocomposite Materials

  • Renju Zacharia (a1), Sami-ullah Rather (a2), Sang Woon Hwang (a3), Arul Manuel Stephan (a4) and Kee Suk Nahm (a5)...


Transition-metal functionalized-carbon nanotubes (CNTs) represent an important genre of hydrogen storage systems that exhibit superior storage capacity and improved storage kinetics when compared with the pristine CNTs. Here, we compare the reversible gravimetric hydrogen storage capacity of platinum-functionalized CNTs with that of pristine tubes, both measured at 300 K and an equilibrium hydrogen pressure of 1.67 MPa. The maximum reversible hydrogen storage capacity exhibited by the nano-composite material is found to be 3.2 ± 0.1 wt%, which is a nearly 50 % enhancement when compared with that of the pristine tubes. The enhanced hydrogen storage capacity of functionalized CNTs is attributed to the spill-over phenomena as suggested by the estimated storage capacity of Pt phase. The hydrogen storage in Pt nanoparticles modeled using the atomic magic number calculation and Pt hydride stoichiometry of PtH4 also suggests that nearly 15 closed shells of Pt atoms reversibly adsorb and spill hydrogen on to CNT binding sites.



Hide All
1. Fichtner, M., Adv. Eng. Mater. 7, (2005) 443.
2. Hirscher, M., Becher, M., Haluska, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G. S., Choi, Y.-M., Downes, P., Hulman, M., Roth, S., Stepanek, I., Bernier, P., Appl. Phys. A 72, 129 (2001).
3. Zhao, Y., Kim, Y. –H., Dillon, A. C., Heben, M. J. and Zhang, S. B, Phys. Rev. Lett. 94, 155504 (2005).
4. Yildirim, T. and Ciraci, S., Phys. Rev. Lett. 94, 175501 (2005).
5. Yildirim, T., Íñiguez, J. and Ciraci, S., Phys. Rev. B 72, 153403 (2005).
6. Zacharia, R., Kim, K. Y., Kibria, A. K. M. Fazle and Nahm, K. S., Chem. Phys. Lett. 412, 369 (2005).
7. Dag, S., Ozturk, Y., Ciraci, S. and Yildirim, T., Phys. Rev. B 72, 155404 (2005).
8. Lueking, A. and Yang, R. T., J. Catal. 206, 165 (2002).
9. Kubas, G. J., J. Organomet. Chem. 635, 37 (2001).
10. Kubas, G. J., Ryan, R. R., Swanson, B. I., Vergamini, P. J. and Wasserman, H. J., J. Am. Chem. Soc. 106 451 (1984).
11. Lachawiec, A. J., Qi, G., Yang, R. T., Langmuir 21, 11418 (2005).
12. Yang, F. H., Lachawiec, A. J., Yang, R. T., J. Phys. Chem. B 110, 6236 (2006).
13. Roland, U., Braunschweig, T., Roessner, F., J. Mol. Catal. A-Chem. 127, 61 (1997).
14. Yoo, E., Gao, L., Komatsu, T., Yagai, N., Arai, K., Yamazaki, T., Matsuishi, K., Matsumoto, T., Nakamura, J., J. Phys. Chem. B 108, 18903 (2004).
15. Davydov, V. Y., Sheppard, N., Osawa, E., Int. J. Hydrogen Energy 29, 1157 (2004).
16. Sun, Q., Wang, Q., Jena, P. and Kawazoe, Y., J. Am. Chem. Soc. 127, 14582 (2005).
17. Pierard, N., Fonseca, A., Colomer, J.–F., Bossout, C., Benoit, J.–M., Van Tendeloo, G., Pirard, J.-P. and Naggy, J. B., Carbon 42, 1691 (2004).
18. Duan, Y. and Li, J., Mater. Chem. Phys. 87, 452 (2004).
19. Zhang, E., Ni, X. M., Zheng, H. G., Li, Y., Zhang, X. J. and Yang, Z. P., Mater. Lett. 59, 2011 (2005).
20. Andreazza, P., Andreazza-Vignole, C., Rosenbaum, J.P., Thomann, A.-L. and Brault, P., Surf. Coat. Tech. 151–152, 122 (2002).
21. Vivekchand, S. R. C., Govindaraj, A., Seikh, M. Motin, Rao, C. N. R., J. Phys. Chem. B 108, 6935 (2004).
22. Zacharia, R., Kim, K. Y., Hwang, S. W., Nahm, K. S., Catal. Today (2006) doi:10.1016/j.cattod.2006.09.026
23. Sachse, J.-U., Weber, J. and Sveinbjörnsson, E.Ö., Phys. Rev. B 60, 1474 (1999).
24. Mackay, A. L., Acta Cryst. 15, 916 (1962).
25. Schmid, G., Klein, N., Morun, B. and Lehnert, A., Pure Appl. Chem. 62, 1175 (1990).
26. van Hardeveld, R. and Hartog, F., Surf. Sci. 15, 189 (1969).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed