Hostname: page-component-848d4c4894-tn8tq Total loading time: 0 Render date: 2024-06-22T23:34:27.803Z Has data issue: false hasContentIssue false

Persistent Photoconductivity in n-Type GaN

Published online by Cambridge University Press:  10 February 2011

A. E. Wickenden
Affiliation:
Electronic Science & Technology Division, Code 6800
G. Beadie
Affiliation:
Optical Sciences Division, Code 5642
D. D. Koleske
Affiliation:
Electronic Science & Technology Division, Code 6800
W. S. Rabinovich
Affiliation:
Optical Sciences Division, Code 5642
J. A. Freitas Jr.
Affiliation:
Electronic Science & Technology Division, Code 6800
Get access

Abstract

Persistent photoconductivity has been observed in n-type Si-doped GaN grown on sapphire substrates by metalorganic vapor phase epitaxy. The effect has been seen both in films which are of electrically high quality, based on low temperature photoluminescence (PL) and Hall analysis, and in films which either appear to be compensated or which exhibit strong donor-acceptor pair recombination. The photoconductivity has been observed to persist for several days at room temperature (300K). Modeling of the resistance recovery by a stretched exponential treatment may suggest a distribution of deep level defect centers in the Si-doped GaN films.

Type
Research Article
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. See, for example, Renfield, D. and Bube, R.H., Photoinduced Defects in Semiconductors, Cambridge University Press (1996).Google Scholar
2. Johnson, C., Lin, J.Y., Jiang, H.X., Khan, M.A. and Sun, C.J., Appl. Phys. Lett. 68 (13), p. 1808 (1996).Google Scholar
3. Li, J.Z., Lin, J.Y., Jiang, H.X., Salvador, A., Botchkarev, A. and Morkoc, H., Appl. Phys. Lett. 69, p. 1474 (1996).Google Scholar
4. Binet, F., Duboz, J.Y., Rosencher, E., Scholz, F. and Harle, V., Appl. Phys. Lett. 69 (9), p. 1202 (1996).Google Scholar
5. Ruvimov, S., Liliental-Weber, Z., Suski, T., Ager, J.W. III, Washburn, J., Krueger, J., Kisielowski, C., Weber, E.R., Amano, H. and Akasaki, I., Appl. Phys. Lett. 69 (7), p. 990 (1996).Google Scholar
6. Wickenden, A.E., Alexander, W.B., Koleske, D.D. and Freitas, J.A. Jr., J. Crystal Growth, in press (1996).Google Scholar
7. Doverspike, K., Wickenden, A.E., Binari, S.C., Gaskill, D.K. and Freitas, J.A. Jr., Mat. Res. Soc. Symp. Proc. Vol. 395, p. 897 (1996).Google Scholar
8. Wickenden, A.E., Rowland, L.B., Doverspike, K., Gaskill, D.K., Freitas, J.A. Jr., Simons, D.S. and Chi, P.H., J. Electron. Matl. 24 (11), p. 1547 (1995).Google Scholar
9. Wickenden, A.E., Gaskill, D.K., Koleske, D.D., Doverspike, K., Simons, D.S. and Chi, P.H., Mat. Res. Soc. Symp. Proc. Vol. 395, p. 679 (1996).Google Scholar
10. For a complete discussion, see Freitas, J.A. Jr. Wickenden, A.E., Koleske, D.D. and Khan, M.A., in press.Google Scholar
11. A technique developed for GaN growth on scandium layers; see Koleske, D.D., Wickenden, A.E., Freitas, J.A. Jr., Kaplan, R. and Prokes, S.M., this volume.Google Scholar
12. Campbell, A. and Streetman, B., Appl. Phys. Lett. 54, p. 445 (1989).Google Scholar
13. Jiang, H. X. and Lin, J. Y., Phys. Rev. Lett. 64, p. 2547 (1990).Google Scholar
14. Dissanayake, A. S., Elahi, M., Jiang, H. X. and Lin, J. Y., Phys. Rev. B 45, p. 13996 (1992).Google Scholar