Hostname: page-component-76fb5796d-x4r87 Total loading time: 0 Render date: 2024-04-26T14:11:04.892Z Has data issue: false hasContentIssue false

Percolation-Enhanced Supercontinuum and Second-Harmonic Generation from Metal Nanoshells

Published online by Cambridge University Press:  01 February 2011

Charles Rohde
Affiliation:
Oregon Center for Optics and Department of Physics, University of Oregon, Eugene, OR 97403, USAcrohde@uoregon.edu
Keisuke Hasegawa
Affiliation:
Oregon Center for Optics and Department of Physics, University of Oregon, Eugene, OR 97403, USAcrohde@uoregon.edu
Aiqing Chen
Affiliation:
Oregon Center for Optics and Department of Physics, University of Oregon, Eugene, OR 97403, USAcrohde@uoregon.edu
Miriam Deutsch
Affiliation:
Oregon Center for Optics and Department of Physics, University of Oregon, Eugene, OR 97403, USAcrohde@uoregon.edu
Get access

Abstract

We present results for linear and nonlinear light scattering experiments from percolative silver nanoshells on dielectric silica cores. Using ultrashort pulsed laser illumination we observe strong nonlinear optical (NLO) responses from single metallodielectric core-shell (MDSC) spheres and disordered MDSC sphere aggregates. Finally, combining scaling theory with core-shell Mie scattering formalism we obtain a new model for the observed linear extinction signals.

Type
Research Article
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1. Raether, H., Surface Plasmons, Springer, Berlin 1988.Google Scholar
2. Kreibig, U., Vollmer, M., Optical Properties of Metal Clusters, Springer, Berlin 1995.Google Scholar
3. Jackson, J. B., Halas, N. J., J. Phys. Chem. B 105, 2743 (2001).Google Scholar
4. Pavia, D. L., Lampman, G. M., et al., Saunders College Publishing, USA 1995.Google Scholar
5. Aden, A. L., Kerker, M., J. Appl. Phys. 22, 1242 (1951).Google Scholar
6. Yagil, Y., Yosefin, M., et al., Phys. Rev. B, 43, 11342 (1991).Google Scholar
7. Bruggeman, D., Ann. Phys. (Leipzig) 24, 6736 (1935).Google Scholar
8. Rohde, C., Hasegawa, K. and Deutsch, M., in preparation (2004).Google Scholar
9. Pipino, A. C. R., Van Duyne, R. P., Schatz, G. C., Phys. Rev. B, 53, 4162 (1996).Google Scholar
10. Anceau, C., Brasselet, S., et al., Opt. Lett, 28, 713 (2003).Google Scholar
11. Ricard, D., Roussignol, Ph., Flytzanis, Chr., Phys. Rev. Lett, 10, 511 (1985).Google Scholar
12. Kim, W., Safonov, V.P., et al., Phys. Rev. Lett, 82, 4811 (1999).Google Scholar
13. Yagil, Y., Gadenne, P., et al., Phys. Rev B 46, 2503 (1992).Google Scholar
14. Shalaev, V. M., Sarychev, A. K., Phys. Rev. B, 57, 13265 (1998).Google Scholar
15. Bloembergen, N., Chang, R. K., et al., Phys. Rev, 174, 813 (1968).Google Scholar
16. Dadap, J. I., Shan, J., et al., Phys. Rev. Lett., 83, 4045 (1999).Google Scholar
17. Ducourtieux, S., Gresillon, S., et al., J. Nonlinear Opt. Phys. Mater, 9, 105 (2000).Google Scholar
18. Sarychev, A., McPhedran, R. C., and Shalaev, V., Phys. Rev. B, 62, 8531 (2000).Google Scholar