Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T16:01:17.426Z Has data issue: false hasContentIssue false

Pd-Ge-Au Ohmic Contacts to GaAs: Reliability and Failure Analysis.

Published online by Cambridge University Press:  25 February 2011

T. E. Kazior
Affiliation:
Raytheon Company, Research Division, 131 Spring St, Lexington MA., 02173
H. Hieslmair
Affiliation:
Raytheon Company, Research Division, 131 Spring St, Lexington MA., 02173
R. C. Brooks
Affiliation:
Raytheon Company, Research Division, 131 Spring St, Lexington MA., 02173
Get access

Abstract

We report on experiments that were performed to evaluate the temperature stability and long term reliability of non-alloyed Pd-Ge-Au ohmic contacts on N-type GaAs. Low resistance contacts (≈1×10−6Ωcm2) were obtained for samples that were sintered in a conventional furnace or flash sintered in a graphite susceptor. Elevated temperature storage (≈4000 hours at 280°C) showed improved contact stability when compared to Ni-AuGe-Ni-Au control samples. Gateless MESFETs subjected to bias temperature stress measurements (Ids ≈300-350mA/mm, 2000–4000 hours at 200°C) showed no significant change in device current. This result is in contrast to devices with Ni-AuGe-Ni-Au ohmic contacts which exhibited a 6–27% decrease in current under the same test conditions. Failure analysis reveals significant electromigration and Au diffusion in the drain fingers of devices with Ni-AuGe-Ni-Au contacts. In contrast, devices with Pd-Ge-Au contacts show no electromigration or Au diffusion in the GaAs.

Type
Articles
Copyright
Copyright © Materials Research Society 1990

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1: for example, see Shih, Y-C., Murakami, M., Wilkie, E. L., and Callegari, A. C, J. Appl. Phys. 62 (2), 582 (1987) and references therein.CrossRefGoogle Scholar
2: Chen, C. L., Mahoney, L. J., Finn, M. C., Brooks, R. C., Chu, A., and Mavroides, J., Appl. Phys. Lett. 48 (8), 535 (1986).CrossRefGoogle Scholar
3: Marshall, E. D., Zhang, B., Wang, L. C., Jiao, P. F., Chen, W. X., Sawada, T., Lau, S. S., Kavanagh, K. L., and Kuech, T. F., J. Appl. Phys. 62 (3), 942 (1987).CrossRefGoogle Scholar
4: Wang, L.C., Zhang, B., Fang, F., Marshall, E. D., Lau, S. S., Sands, T., Kuech, T. F., J. Mater. Res. 3 (5), 922 (1988).CrossRefGoogle Scholar
5: for example, see Murakami, M., Shih, Y-C., Price, W. H., Wilkie, E. L., Childs, K. D., and Parks, C. C., J. Appl Phys. 65 (4), 1974 (1988) and references therein.CrossRefGoogle Scholar
6: Allen, L. H., Hung, L. S., Kavanagh, K. L., Phillips, J. R., Yu, A. J., and Mayer, J. W., Appl. Phys. Lett. 51 (5), 326 (1987).CrossRefGoogle Scholar
7: Paccagnella, A., Migliori, A., Vanzi, M., Zhang, B. , and Lau, S. S., Solid State Devices, Proceedings of the 17th European Solid State Device Research Conference, ESSDERC ’87, 839 (1988).Google Scholar
8: Paccagnella, A., Canali, C., Donzelli, G., Zanoni, E., Zanetti, R., and Lau, S. S., Journal de Physique, 49 (9), C4441 (1988).Google Scholar
9: Kazior, T. E. and Brooks, R. C., presented at 175th Meeting of the Electrochemical Society, Los Angelas, CA, May, 712 1989; submitted to J. Electrochem. Soc.Google Scholar
10: Berger, H. H., Solid State Electron. 15, 145 (1972).CrossRefGoogle Scholar